Maedi-Visna virus (MVV) and caprine arthritis encephalitis virus (CAEV) are two prototype members of the group of small ruminant lentiviruses (SRLVs). Both result in progressive and persistent infections of sheep and goats that impact animal health and cause economic losses. In Belgium, the sheep and goat sector is small and consists mostly of hobbyist farmers keeping few animals. A voluntary control program however exists, but less than 2% of the farmers participate to the program. The current lack of SRLV seroprevalence data and knowledge on risk factors related to SRLV seropositivity in this hobbyist sector makes it difficult to evaluate the risk of SRLV transmission from non-certified to SRLV free certified farms. We performed a nationwide SRLV seroprevalence study based on a stratified sampling proportional to the number of sheep and goat holders per province. Randomly selected sheep and goat owners were invited to participate and subject to a short questionnaire to collect information about flock size, animal health condition, age, flock constitution and housing conditions. Samples were collected from maximum 7 animals per farm and tested in a commercial ELISA. In total, we received samples from 87 sheep and 76 goat farms. Sheep flocks showed an overall seroprevalence of 9% (CI : 5-15) and a between-herd seroprevalence of 17% (CI :11-27). Seroprevalence at animal level in goat flocks was 6% (CI : 3-12) and the between-herd seroprevalence was 13% (CI : 7-23). Multiple sheep and goat breeds were found SRLV seropositive. Answers provided during the questionnaire confirmed the mostly hobbyist nature of the sector and showed that more than 65% of sheep and goat farmers had never heard of the disease. The only risk factor found to be related to SRLV seroprevalence was flock size. Herds of more than 10 goats had significantly higher chance to harbor seropositive animals (OR: 4.36; CI: 1.07; 17.73). In conclusion, it was shown that participants to the SRLV free certification program are at risk for reintroduction of the disease in their herds since SRLVs are present on about 15%-20% of non-certified farms. Except from flock size, no clear risk factors were found that are helpfull to identify flocks at risk. Greater effort should be made to inform sheep and goat farmers about the existence and consequences of this disease in order to promote the voluntary control program and further reduce the disease prevalence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prevetmed.2017.12.014 | DOI Listing |
Front Antibiot
May 2024
Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States.
Introduction: The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia.
View Article and Find Full Text PDFVet Ital
January 2025
University Hospital College, University of Ibadan, Nigeria.
The advancement of small ruminant farming in Benin has encountered challenges associated with health issues and agricultural practices. This study aimed to provide the initial documentation of the prevalence of enzootic ovine abortion and evaluate the health status of animals concerning various recurring diseases on traditional small ruminant farms in Benin. In 2023, a semi-structured survey of 450 farms was carried out in two agricultural development centers in Benin.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
This study aimed to employ a multi-omics method to identify key compounds contributing to the sensory flavour of mutton and to investigate the internal correlation between volatile metabolites and lipids in Cashmere goats and Tan sheep. The results demonstrate that the electronic nose can effectively and quickly distinguish goats and sheep meat. A total of 18 volatile metabolites and 314 lipids were identified as significant contributors to the flavour difference between goats and sheep meat, as determined by HS-SPME-GC-MS and lipidomic respectively.
View Article and Find Full Text PDFBMC Microbiol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
Background: Identifying markers or genes crucial for growth traits in Zhongwei goats is pivotal for breeding. Pinpointing genetic factors linked to body size gain enhances breeding efficiency and economic value. In this study, we used the MGISEQ-T7 platform to re-sequence 240 Zhongwei goats (133 male; 107 female) belonging to 5 metrics of growth traits at different growth stages (40 days and 6 months, here in after referred to as 40d and 6 m), namely, Body Weight (BW), Body Height (BH), Body Length (BL), Chest Circumference (CC), Tube Circumference (TC) were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!