The network of molecular players is similar when comparing neural crest-derived, actively migrating melanoblasts to melanoma cells. However, melanoblasts are sensitive to differentiation-initiating signals at their target site (epidermis), while melanoma cells maintain migratory and undifferentiated features. We aimed at identifying downregulated genes in melanoma that are particularly upregulated in melanoblasts. Loss of such genes could contribute to stabilization of a dedifferentiated, malignant phenotype in melanoma. We determined that microRNA-622 (miR-622) expression was strongly downregulated in melanoma cells and tissues compared to melanocytes and melanoblast-related cells. miR-622 expression correlated with survival of patients with melanoma. miR-622 re-expression inhibited clonogenicity, proliferation, and migration in melanoma. Inhibition of miR-622 in melanocytes induced enhanced migration. Kirsten rat sarcoma (KRAS) was identified as a major functional target of miR-622 in melanoma. We conclude that miR-622 is a novel tumor suppressor in melanoma and identify the miR-622-KRAS axis as potential therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pcmr.12698DOI Listing

Publication Analysis

Top Keywords

melanoma cells
12
melanoma
10
kirsten rat
8
rat sarcoma
8
mir-622 expression
8
mir-622
6
microrna-622 novel
4
novel mediator
4
mediator tumorigenicity
4
tumorigenicity melanoma
4

Similar Publications

Uveal melanoma (UM) has emerged as one of the most common primary intraocular malignant tumors worldwide. Long non-coding RNAs (lncRNAs) are increasingly recognized as decisive factors in the progression and metastasis of UM, involving in epithelial-mesenchymal transition (EMT) of UM. We conducted a comprehensive analysis of lncRNAs closely associated with EMT-related genes in the TCGA UM cohort, identifying 961 EMT-related lncRNAs.

View Article and Find Full Text PDF

Lentinan inhibits melanoma development by regulating the AKT/Nur77/Bcl-2 signaling axis.

J Cancer

January 2025

Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, People's Republic of China.

Melanoma is a highly malignant and difficult-to-treat skin cancer. Many researchers are exploring natural products for its treatment. Lentinan (LNT), extracted from , exerts strong anti-tumor effects.

View Article and Find Full Text PDF

Artemisinin Suppressed Melanoma Recurrence and Metastasis after Radical Surgery through the KIT/PI3K/AKT Pathway.

Int J Biol Sci

January 2025

Cancer Center and Center of Reproduction, Development & Aging, Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.

Cancer radical surgery is the primary treatment for melanoma, but almost all malignant melanoma patients get recurrence and metastasis after surgery and are eventually dead. This clinical dilemma appeals to better drugs for post-surgery therapy. Artemisinin is a safe and effective antimalarial drug used in the clinic for decades.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are abundant in colorectal cancer (CRC), correlating with immunosuppression and disease progression. Activation of the stimulator of interferon gene (STING) signaling pathway in TAMs offers a promising approach for CRC therapy. However, current STING agonists face challenges related to tumor specificity and administration routes.

View Article and Find Full Text PDF

Persistence and/or Senescence: Not So Lasting at Last?

Cancer Res

January 2025

Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité - Universitätsmedizin, Berlin, Germany.

Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!