Heterozygosity and Chain Multivalents during Meiosis Illustrate Ongoing Evolution as a Result of Multiple Holokinetic Chromosome Fusions in the Genus Melinaea (Lepidoptera, Nymphalidae).

Cytogenet Genome Res

Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS MNHN UPMC EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France.

Published: April 2018

Mitotic and meiotic chromosomes from 2 taxa of the genus Melinaea, M. satevis cydon and M. "satevis" tarapotensis (Lepidoptera: Nymphalidae), and from hybrids produced in captivity were obtained using an improved spreading technique and were subsequently analyzed. In one of the taxa, the presence of trivalents and tetravalents at diakinesis/metaphase I is indicative of heterozygosity for multiple chromosome fusions or fissions, which might explain the highly variable number of chromosomes previously reported in this genus. Two large and complex multivalents were observed in the meiotic cells of the hybrid males (32 chromosomes) obtained from a cross between M. "s." tarapotensis (28 chromosomes) and M. s. cydon (40-43 chromosomes). The contribution of the 2 different haploid karyotypes to these complex figures during meiosis is discussed, and a taxonomic revision is proposed. We conclude that chromosome evolution is active and ongoing, that the karyotype of the common ancestor consisted of at least 48 chromosomes, and that evolution by chromosome fusion rather than fission is responsible for this pattern. Complex chromosome evolution in this genus may drive reproductive isolation and speciation, and highlights the difficulties inherent to the systematics of this group. We also show that Melinaea chromosomes, classically considered as holocentric, are attached to unique, rather than multiple, spindle fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000487107DOI Listing

Publication Analysis

Top Keywords

chromosome fusions
8
genus melinaea
8
lepidoptera nymphalidae
8
chromosome evolution
8
chromosomes
7
chromosome
5
heterozygosity chain
4
chain multivalents
4
multivalents meiosis
4
meiosis illustrate
4

Similar Publications

Embryonic-type neuroectodermal tumors (ENTs) arising from testicular germ cell tumors (GCTs) is a relatively common type of somatic transformation in GCTs with poor prognosis and limited therapeutic options, particularly when patients develop disease recurrence or metastasis. Knowledge of key events driving this transformation is limited to the paucity of comprehensive genomic data. We performed a retrospective database search in a CLIA- and CAP-certified laboratory for testicular GCT-derived ENTs that had previously undergone NGS-based comprehensive genomic profiling during the course of clinical care.

View Article and Find Full Text PDF

Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent.

View Article and Find Full Text PDF

Background: Primary squamous cell carcinoma (SCC) of the middle ear is rare, with non-keratinizing basaloid types being exceptionally uncommon. Distinguishing these cancers, often caused by viral factors (, human papillomavirus or Epstein-Barr virus), or specific genetic alterations (, bromodomain-containing protein 4-nuclear protein in or gene fused with FLI chromosomal rearrangement), from other cranial conditions, is difficult. The recently identified DEK::AFF2 non-keratinizing SCC (NKSCC) is a novel subtype, fitting the World Health Organization classification of head and neck neoplasms.

View Article and Find Full Text PDF

High-quality genome of Firmiana hainanensis provides insights into the evolution of Malvaceae subfamilies and the mechanism of their wood density formation.

J Genet Genomics

December 2024

Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, the Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China. Electronic address:

Article Synopsis
  • The Malvaceae family, the largest in the order Malvales, has nine subfamilies, with many species in the Firmiana genus being globally vulnerable and lacking genomic research.
  • A chromosome-level genome assembly for Firmiana hainanensis reveals it has 40 chromosomes and is closely related to Durio zibethinus, diverging around 21 million years ago, with significant events in their evolutionary histories.
  • The study highlights how changes in chromosome numbers and genome sizes, particularly influenced by repetitive elements and specific gene contractions, can impact traits like wood density in Malvaceae species.
View Article and Find Full Text PDF

Studies of the FBT family transporters in Leishmania infantum by gene deletion and protein localization.

Exp Parasitol

December 2024

Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada. Electronic address:

The protozoan parasite Leishmania has a large family of major facilitator membrane proteins part of the Folate Biopterin Transporter (FBT) family. The chromosome 10 of Leishmania has a cluster of 7 FBT genes including the S-Adenosyl methionine (AdoMet) transporter and the functionally characterized folate transporters FT1 and FT5. Six of the 7 FBT proteins coded by this locus are located at the plasma membrane as determined by gene fusions with the green fluorescent protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!