We describe the asymmetric synthesis of a highly substituted ω-octynoic acid derivative and demonstrate its utility for generating complex macrocycles from unprotected peptides. The molecule harbors an isolated quaternary center that displays four uniquely functionalized arms, each of which can be reacted orthogonally in sequence as the molecule is integrated into peptide structure. These processing sequences entail (1) scaffold ligation, (2) macrocyclization via internal aromatic alkylations or catalyzed etherifications, (3) acyliminium ion mediated embedding of condensed heterocycles, and (4) terminal alkyne derivatization or dimerization reactions. Numerous polycycles are prepared and fully characterized in this study. Factors that influence reaction efficiencies and selectivity are also probed. We construct a novel mimic of the second mitochondria derived activator of caspase using these techniques, wherein subtle variations in macrocycle connectivity have a marked impact on performance. In general, the chemistry is an important step toward facile, systematic access to complex peptidomimetics synthesized by directly altering the structure and properties of machine-made oligomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b02958 | DOI Listing |
J Am Chem Soc
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands.
We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.
View Article and Find Full Text PDFDalton Trans
January 2025
Univ. Bourgogne Europe, CNRS, ICMUB (UMR 6302) Institut de Chimie Moléculaire de l'Université de Bourgogne, 9, Avenue Alain Savary, 21 000 Dijon, France.
We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).
View Article and Find Full Text PDFChem Rev
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Template-directed synthesis has become a powerful methodology to access complex molecules. Noncovalent templating has been widely used in the last few decades, but less attention has been paid to covalent template-directed synthesis, despite the fact that this methodology was used for the first reported synthesis of a catenane. This review highlights the evolution of covalent templating over the last 60 years, thereby providing a toolbox for the design of efficient covalent templating processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!