Oxidized sodium alginate is a handily modifiable polysaccharide owing to the pendant aldehyde groups which can form dynamic covalent bonds with amines, acylhydrazines, etc., providing oxidized sodium alginate-based hydrogels with stimuli-responsive properties. However, due to the stiffness and, in particular, the hydrophobicity of sodium alginate dialdehyde at low pH, the mechanical performance and pH stimuli responsiveness of oxidized sodium alginate-based hydrogels are still strictly limited. Herein, we report a new strategy to build an injectable, dual responsive, and self-healing hydrogel based on oxidized sodium alginate and hydrazide-modified poly(ethyleneglycol) (PEG). The hydrazide-modified PEG, referred to as PEG-DTP, acts as a macromolecule crosslinker. We found that the presence of PEG-DTP reduces the hydrophobicity of oxidized sodium alginate at low pH so effectively that even a pH-induced reversible sol-gel transitions can be realized. Meanwhile, the disulfide bonds in PEG-DTP endows the hydrogel with the other reversible sol-gel transitions by redox stimuli. In particular, due to the softness of PEG-DTP chains, mechanical performance was also enhanced significantly. Our results indicate we can easily integrate multi-stimuli responsiveness, injectability, and self-healing behavior together into an oxidized sodium alginate-based hydrogel merely by mixing an oxidized sodium alginate solution with PEG-DTP solution in certain proportions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017758 | PMC |
http://dx.doi.org/10.3390/molecules23030546 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!