Replicating and Cycling Stores of Information Perpetuate Life.

Bioessays

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.

Published: April 2018

Life is perpetuated through a single-cell bottleneck between generations in many organisms. Here, I highlight that this cell holds information in two distinct stores: in the linear DNA sequence that is replicated during cell divisions, and in the three-dimensional arrangement of molecules that can change during development but is recreated at the start of each generation. These two interdependent stores of information - one replicating with each cell division and the other cycling with a period of one generation - coevolve while perpetuating an organism. Unlike the genome sequence, the arrangement of molecules, including DNA, RNAs, proteins, sugars, lipids, etc., is not well understood. Because this arrangement and the genome sequence are transmitted together from one generation to the next, analysis of both is necessary to understand evolution and origins of inherited diseases. Recent developments suggest that tools are in place to examine how all the information to build an organism is encoded within a single cell, and how this cell code is reproduced in every generation. See also the video abstract here: https://youtu.be/IdWEL-T6TPU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303024PMC
http://dx.doi.org/10.1002/bies.201700161DOI Listing

Publication Analysis

Top Keywords

arrangement molecules
8
genome sequence
8
cell
5
replicating cycling
4
cycling stores
4
stores perpetuate
4
perpetuate life
4
life life
4
life perpetuated
4
perpetuated single-cell
4

Similar Publications

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

protein design has advanced such that many peptide assemblies and protein structures can be generated predictably and quickly. The drive now is to bring functions to these structures, for example, small-molecule binding and catalysis. The formidable challenge of binding and orienting multiple small molecules to direct chemistry is particularly important for paving the way to new functionalities.

View Article and Find Full Text PDF

Molecular arrangement in the chiral smectic phases of the glassforming (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]benzoate is investigated by X-ray diffraction. An increased correlation length of the positional short-range order in the supercooled state agrees with the previous assumption of the hexatic smectic phase. However, the registered X-ray diffraction patterns are not typical for the hexatic phases.

View Article and Find Full Text PDF

Context-Dependent Heterotypic Assemblies of Intrinsically Disordered Peptides.

J Am Chem Soc

January 2025

Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States.

Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!