Fluorescence quantum yields of dye aggregates: a showcase example based on self-assembled perylene bisimide dimers.

Phys Chem Chem Phys

Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.

Published: March 2018

Constituting an intermediate state of matter between molecules and solid state materials, dye aggregates can give important insights into functional properties. Despite the importance of fluorescence for many applications, it turns out that the conventional methods for quantum yield determination are not applicable to dye aggregates and so far no method has been introduced for the accurate determination of the fluorescence quantum yields of dye aggregates. Here we suggest two measurement routines for the quantum yield determination of strongly absorbing dye aggregates. Both methods provide the quantum yield of the aggregated species without the necessity of reaching a fully aggregated state, which is particularly important for the most common case imparted by the low association constants of π-π-stacking interactions. The routines are experimentally validated with two perylene bisimide dyes whose self-assembly is driven by the concerted interplay of hydrogen bonding and π-π-stacking interactions, leading to structurally well defined co-facially stacked dimers at intermediate concentrations and a further growth into larger H-aggregates at a higher concentration. Compared to other H-aggregates relatively high fluorescence quantum yields of up to 28% are found for both the co-facially stacked dimers and the larger H-aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp07778eDOI Listing

Publication Analysis

Top Keywords

dye aggregates
20
fluorescence quantum
12
quantum yields
12
quantum yield
12
yields dye
8
perylene bisimide
8
yield determination
8
π-π-stacking interactions
8
co-facially stacked
8
stacked dimers
8

Similar Publications

The field of π-conjugated organic materials has seen significant advances in recent years. However, enhancing the functionality of well-established, mass-produced compounds remains a considerable challenge, despite being an intriguing strategy for designing high-value organic materials with low production costs. In this context, vat dyes, known for their wide range of colors and extensive use in the textile industry are particularly attractive.

View Article and Find Full Text PDF

Reducing aggregation caused quenching and enhancing stability is crucial in the fabrication of organic light-emitting diodes. Herein, we successfully fabricated blue-emitting coordination polymer glasses using perylene dye and a zinc-based coordination glass. The aggregation of perylene monomers in the solid state was significantly suppressed, and the hybrid glass demonstrated high stability and strong photoluminescent quantum yield (75.

View Article and Find Full Text PDF

A Y178C rhodopsin mutation causes aggregation and comparatively severe retinal degeneration.

Cell Death Discov

January 2025

Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.

Rhodopsin is the light-activated G protein-coupled receptor that initiates vision in photoreceptor cells of the retina. Numerous mutations in rhodopsin promote receptor misfolding and aggregation, causing autosomal dominant retinitis pigmentosa, a progressive retinal degenerative disease. The mechanism by which these mutations cause photoreceptor cell death, and the role aggregation plays in this process is still unclear.

View Article and Find Full Text PDF

Controlled Self-assembly of Nanographdiynes Mediated by Molecular Dipoles Induced by Rotatory Asymmetric Substituents.

Chemistry

January 2025

Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organi, Zhongguancun North First Street 2, 100190, Beijing, CHINA.

The discrete π- stacks of specific lengths and orientation is crucial for understanding the impact of intermolecular interactions on optical or electronic properties of nanographdiynes. We designed and synthesized nanographdiynes modified with bulky rotatable asymmetric substituents. The peripheral substituents with different push-pull electronic properties can induce molecular dipoles perpendicular to nanoGDY π surface with different orientation.

View Article and Find Full Text PDF

Drug-assisted White Light Generation via Self-assembly.

Chem Asian J

January 2025

IISER Bhopal Department of Chemistry, Chemistry, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.

White-light generation using small organic molecules has gained significant attention from researchers working on the interface of supramolecular chemistry and organic materials. Self-assembled multi-chromophoric materials utilizing a drug molecule and microenvironment-sensitive intramolecular charge transfer dye as an emitter offer the possibility of tunable emission. In this investigation, we focused on white light generation via the combination of a polarity-sensitive red-emitting styryl chromone (SC) and a blue-emitting anticancer and psychotherapeutic drug Norharmane (NHM) in a self-assembled micellar system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!