Corrosion of bare carbon steel as a passive sensor to assess moisture availability for biological activity in Atacama Desert soils.

Antonie Van Leeuwenhoek

Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile.

Published: August 2018

AI Article Synopsis

  • The study explores the use of polished carbon steel coupons as sensors to determine water availability for biological activity in Atacama Desert soils.
  • The coupons were placed in various environments and analyzed for corrosion, which serves as an indicator of atmospheric moisture history.
  • Findings indicate that corrosion patterns differ significantly based on local humidity levels, from well-crystallized oxide formations at coastal sites to amorphous oxides in drier regions.

Article Abstract

Here we consider that the corrosion of polished bared metal coupons can be used as a passive sensor to detect or identify the lower limit of water availability suitable for biological activity in Atacama Desert soils or solid substrates. For this purpose, carbon steel coupons were deposited at selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, long rectangular shaped ones that were half-buried in a vertical position, and square shaped ones that were deposited on the soil surface. The morphological attributes observed by SEM inspection were found to correlate to the so-called humectation time which is determined from local meteorological parameters. The main finding was that the decreasing trend of atmospheric moisture along the transect was closely related to corrosion behaviour and water soil penetration. For instance, at the coastal site oxide phases formed on the coupon surface rapidly evolve into well-crystallized species, while at the driest inland site Lomas Bayas only amorphous oxide was observed on the coupons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-018-1037-5DOI Listing

Publication Analysis

Top Keywords

carbon steel
8
passive sensor
8
biological activity
8
activity atacama
8
atacama desert
8
desert soils
8
oxide phases
8
atmospheric moisture
8
corrosion
4
corrosion bare
4

Similar Publications

Residential and non-residential buildings are a major contributor to human well-being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material-related emissions gain relevance.

View Article and Find Full Text PDF

Management of building materials' stocks and flows is a major opportunity for circularity and de-carbonization. We examine the relationship between material consumption and associated greenhouse gas (GHG) emissions under different scenarios in Israel, a developed country with an already high population density that expects tremendous growth in its housing stock by 2050. We created scenarios of varying housing unit sizes and additional material efficiency practices: fabrication yield, lifetime extension, material substitution, recycling, and their combination, resulting in 18 scenarios.

View Article and Find Full Text PDF

In this study, the assessment of the leaves' co-product resulting from the hydrodistillation process was conducted to evaluate its anticorrosive potential for carbon steel in the hydrochloric acid medium. Phytochemical analysis of this biomass revealed its abundance in terms of polyphenols and flavonoids; hence the determination of total polyphenol content recorded a value of 75.4 mg GAE per g extract.

View Article and Find Full Text PDF

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

Encapsulation of fluorescent carbon dots into mesoporous SiO colloidal spheres by surface functionalization-assisted cooperative assembly for high-contrast latent fingerprint development.

Chemosphere

December 2024

State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK. Electronic address:

Exploiting solid powder fluorescence holds significant potential in diverse domains including medicine and forensics. Conventional fingerprint detection methods often fall short due to low contrast, sensitivity, and high toxicity. To addressing these challenges, we present a novel method for latent fingerprint detection using fluorescent carbon dots (CDs) encapsulated into conventional or mesoporous SiO colloidal spheres (CD@SiO or CDs@m-SiO) through a surface functionalization-assisted cooperative assembly process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!