Objective: An 'optimal' cerebral perfusion pressure (CPPopt) can be defined as the point on the CPP scale corresponding to the greatest autoregulatory capacity. This can be established by examining the pressure reactivity index PRx-CPP relationship, which is approximately U-shaped but suffers from noise and missing data. In this paper, we present a method for plotting the whole PRx-CPP relationship curve against time in the form of a colour-coded map depicting the 'landscape' of that relationship extending back for several hours and to display this robustly at the bedside.This is a short version of a full paper recently published in Critical Care Medicine (2016) containing some new insights and details of a novel bedside implementation based on a presentation during Intracranial Pressure 2016 Symposium in Boston.

Methods: Recordings from routine monitoring of traumatic brain injury patients were processed using ICM+. Time-averaged means for arterial blood pressure, intracranial pressure, cerebral perfusion pressure (CPP) and pressure reactivity index (PRx) were calculated and stored with time resolution of 1 min. ICM+ functions have been extended to include not just an algorithm of automatic calculation of CPPopt but also the 'CPPopt landscape' chart.

Results: Examining the 'CPPopt landscape' allows the clinician to differentiate periods where the autoregulatory range is narrow and needs to be targeted from periods when the patient is generally haemodynamically stable, allowing for more relaxed CPP management. This information would not have been conveyed using the original visualisation approaches.

Conclusions: We describe here a natural extension to the concept of autoregulatory assessment, providing the retrospective 'landscape' of the PRx-CPP relationship extending over the past several hours. We have incorporated such visualisation techniques online in ICM+. The proposed visualisation may facilitate clinical evaluation and use of autoregulation-guided therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-65798-1_12DOI Listing

Publication Analysis

Top Keywords

prx-cpp relationship
12
traumatic brain
8
brain injury
8
injury patients
8
cerebral perfusion
8
perfusion pressure
8
pressure reactivity
8
relationship extending
8
extending hours
8
intracranial pressure
8

Similar Publications

Article Synopsis
  • * A secondary analysis found that patients in the CPPopt-targeted group had better autoregulation, indicated by a significantly lower median ΔPRx during preserved autoregulation periods compared to the control group.
  • * The study concludes that while there was no noticeable difference in overall PRx averages, targeting CPPopt appears to enhance cerebrovascular reactivity in TBI patients.
View Article and Find Full Text PDF

Lower Limit of Reactivity Assessed with PRx in an Experimental Setting.

Acta Neurochir Suppl

June 2021

Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.

In traumatic brain injury, longer time spent with a cerebral perfusion pressure (CPP) below the pressure reactivity index (PRx)-derived lower limit of reactivity (LLR) has been shown to be statistically associated with higher mortality. We set out to scrutinise the behaviour of LLR and the methods of its estimation in individual cases by performing retrospective analysis of intracranial pressure (ICP), arterial blood pressure (ABP) and laser Doppler flow (LDF) signals recorded in nine piglets undergoing controlled, terminal hypotension. We focused on the sections of the recordings with stable experimental conditions where a clear breakpoint of LDF/CPP characteristic (LLA) could be identified.

View Article and Find Full Text PDF

Objectives: The pressure-reactivity index (PRx) is defined in terms of the moving correlation coefficient between intracranial pressure (ICP) and mean arterial pressure (MAP) and is a measure of cerebral autoregulation ability. Plots of PRx against cerebral perfusion pressure (CPP) show a U-shaped behaviour: the minimum reflecting optimal cerebral autoregulation (CPPopt). However U-shaped behaviour may also occur by chance.

View Article and Find Full Text PDF

Occurrence of CPPopt Values in Uncorrelated ICP and ABP Time Series.

Acta Neurochir Suppl

July 2018

Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

Objectives: Optimal cerebral perfusion pressure (CPPopt) is a concept that uses the pressure reactivity (PRx)-CPP relationship over a given period to find a value of CPP at which PRx shows best autoregulation. It has been proposed that this relationship be modelled by a U-shaped curve, where the minimum is interpreted as being the CPP value that corresponds to the strongest autoregulation. Owing to the nature of the calculation and the signals involved in it, the occurrence of CPPopt curves generated by non-physiological variations of intracranial pressure (ICP) and arterial blood pressure (ABP), termed here "false positives", is possible.

View Article and Find Full Text PDF

Objective: An 'optimal' cerebral perfusion pressure (CPPopt) can be defined as the point on the CPP scale corresponding to the greatest autoregulatory capacity. This can be established by examining the pressure reactivity index PRx-CPP relationship, which is approximately U-shaped but suffers from noise and missing data. In this paper, we present a method for plotting the whole PRx-CPP relationship curve against time in the form of a colour-coded map depicting the 'landscape' of that relationship extending back for several hours and to display this robustly at the bedside.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!