A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical nanoarchitectonics through polyaminobenzylamine-dodecyl phosphate complexes: redox activity and mesoscopic organization in self-assembled nanofilms. | LitMetric

Electrochemical nanoarchitectonics through polyaminobenzylamine-dodecyl phosphate complexes: redox activity and mesoscopic organization in self-assembled nanofilms.

Phys Chem Chem Phys

Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, La Plata, Argentina.

Published: March 2018

Molecular design and preparation of redox active films displaying mesoscopic levels of organization represents one of the most actively pursued research areas in nanochemistry. These mesostructured materials are not only of great interest at the fundamental level because of their unique properties but they can also be employed for a wide range of applications such as electrocatalysts, electronic devices, and electrochemical energy conversion and storage. Herein, we introduce a simple and straightforward strategy to chemically modify electrode surfaces with self-assembled electroactive polyelectrolyte-surfactant complexes. These assemblies are composed of amino-appended polyaniline and monododecyl phosphate. The complexes were deposited by spin-coating and the films were characterized by spectroscopic and X-ray-based techniques: XRR, GISAXS, WAXS, and XPS. The films presented a well-defined lamellar structure, directed by the strong interaction between the phosphate groups and the positively charged amine groups in the polyelectrolyte. These films also displayed intrinsic electroactivity in both acidic and neutral solutions, showing that the polymer remains electroactive and ionic transport is still possible through the stratified and hydrophobic coatings. The stability and enhanced electroactivity in neutral solutions make these assembled films promising building blocks for the construction of nanostructured electrochemical platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp08139aDOI Listing

Publication Analysis

Top Keywords

phosphate complexes
8
neutral solutions
8
films
5
electrochemical nanoarchitectonics
4
nanoarchitectonics polyaminobenzylamine-dodecyl
4
polyaminobenzylamine-dodecyl phosphate
4
complexes redox
4
redox activity
4
activity mesoscopic
4
mesoscopic organization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!