Caspase-3 is a vital executioner molecule during the apoptotic process. Numerous studies have revealed the close association of caspase-3 expression and breast cancer. Nevertheless, the prognostic value of caspase-3 expression for patients with breast cancer remains uncertain. To thoroughly analyze the prognostic effect of caspase-3 expression on the clinicopathological features and survival of breast cancer, we conducted this meta-analysis. With various search strategies, electronic databases were comprehensively searched. A total of 3091 patients from 21 studies were ultimately obtained. The analysis results indicated that increased expression of caspase-3 had a negative influence on the overall survival (OS) of breast cancer (HR = 1.73, 95%CI 1.12-2.67, = 0.014). Subgroup analyses based on race revealed that the value of caspase-3 for evaluating patients' OS was more useful in Asian patients (HR = 3.16, 95%CI 1.20-8.15, = 0.020), and subgroup analyses based on study analytical methods revealed that caspase-3 was a risk factor for breast cancer patients in multivariate overall survival analyses (HR = 1.67, 95%CI 1.02-2.75, = 0.044). As for the relationship between caspase-3 expression and breast cancer subtype as well as progression, caspase-3 might serve as a risk factor for the progestogen receptor (PR) and human epidermal growth factor receptor-2 (HER-2) subtypes (OR = 1.44, 95%CI 1.09-1.89, = 0.010; OR = 1.76, 95%CI 1.18-2.62, = 0.050, respectively) of breast cancer. However, no evidence showed that increased expression of caspase-3 was statistically correlated with tumor differentiation state (low/moderate or high), tumor TNM stage (I-II/III-IV) or lymph node metastasis (-/+). In conclusion, this meta-analysis revealed that increased caspase-3 expression was significantly associated with worse prognosis and two subtypes of breast cancer. More prospective studies are urgently needed to define the prognostic value of caspase-3 expression in patients with breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823563 | PMC |
http://dx.doi.org/10.18632/oncotarget.23667 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China.
Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu, 50411, Estonia.
In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.
View Article and Find Full Text PDFAngiology
January 2025
Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.
Breast cancer is the most common malignancy among women. While advances in detection and treatment have improved survival, breast cancer survivors face an increased risk of cardiovascular disease. However, limited data exist on cardiac outcomes after ST-elevation myocardial infarction (STEMI) in this population.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China.
Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.
Black phosphorus (BP) has demonstrated potential as a drug carrier and photothermal agent in cancer therapy; however, its intrinsic functions in cancer treatment remain underexplored. This study investigates the immunomodulatory effects of polyethylene glycol-functionalized BP (BP-PEG) nanosheets in breast cancer models. Using immunocompetent mouse models-including 4T1 orthotopic BALB/c mice and MMTV-PyMT transgenic mice, it is found that BP-PEG significantly inhibits tumor growth and metastasis without directly inducing cytotoxicity in tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!