A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulatory integration of Hox factor activity with T-box factors in limb development. | LitMetric

Regulatory integration of Hox factor activity with T-box factors in limb development.

Development

Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada

Published: March 2018

In tetrapods, , and Hox cluster genes are crucial for forelimb and hindlimb development and mutations in these genes are responsible for congenital limb defects. The molecular basis of their integrated mechanisms of action in the context of limb development remains poorly understood. We studied Tbx4 and Hoxc10 owing to their overlapping loss-of-function phenotypes and colocalized expression in mouse hindlimb buds. We report an extensive overlap between Tbx4 and Hoxc10 genome occupancy and their putative target genes. Tbx4 and Hoxc10 interact directly with each other, have the ability to bind to a previously unrecognized T-box-Hox composite DNA motif and show synergistic activity when acting on reporter genes. Pitx1, the master regulator for hindlimb specification, also shows extensive genomic colocalization with Tbx4 and Hoxc10. Genome occupancy by Tbx4 in hindlimb buds is similar to Tbx5 occupancy in forelimbs. By contrast, another Hox factor, Hoxd13, also interacts with Tbx4/Tbx5 but antagonizes Tbx4/Tbx5-dependent transcriptional activity. Collectively, the modulation of Tbx-dependent activity by Hox factors acting on common DNA targets may integrate different developmental processes for the balanced formation of proportionate limbs.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.159830DOI Listing

Publication Analysis

Top Keywords

tbx4 hoxc10
16
hox factor
8
limb development
8
hindlimb buds
8
hoxc10 genome
8
genome occupancy
8
tbx4
5
regulatory integration
4
hox
4
integration hox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!