Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biomedical application of cerium oxide nanoparticles (nanoceria) is a focal point of research for a few years. The biochemical effects of nanoceria depend on various factors including particle size, oxidation state of cerium, oxygen vacancies on the surface, use of dispersants or coatings, pH and cell type. Due to their autocatalytic redox-activity, these particles are considered to act as a specific anti-cancer tool with less side effects on healthy cells and tissues, as the particles kill tumor cells, while protecting healthy cells from oxidative damage. In the present study, four different types of nanoceria were investigated with regard to their impact on biochemical parameters in vitro, which play a pivotal role in tumor-stroma interaction. The obtained data and presented in vitro test parameters will be helpful in designing nanoceria compositions, which are ideally suited for anticancer therapy, either as a 'stand alone drug' or in combination with other chemotherapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2017.2452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!