Background: The underlying mechanism of brain glucose hypometabolism, an invariant neurodegenerative feature that tightly correlates with cognitive impairment and disease progression of Alzheimer's disease (AD), remains elusive.
Methods: Positron emission tomography with 2-[F]fluoro-2-deoxy-D-glucose (FDG-PET) was used to evaluate brain glucose metabolism, presented as the rate of 2-[F]fluoro-2-deoxy-D-glucose standardized uptake value ratio (FDG SUVR) in patients with AD or control subjects and in mice with or without thiamine deficiency induced by a thiamine-deprived diet. Brain amyloid-β (Aβ) deposition in patients with clinically diagnosed AD was quantified by performing assays using C-Pittsburgh compound B PET. The levels of thiamine metabolites in blood samples of patients with AD and control subjects, as well as in blood and brain samples of mice, were detected by high-performance liquid chromatography with fluorescence detection.
Results: FDG SUVRs in frontal, temporal, and parietal cortices of patients with AD were closely correlated with the levels of blood thiamine diphosphate (TDP) and cognitive abilities, but not with brain Aβ deposition. Mice on a thiamine-deprived diet manifested a significant decline of FDG SUVRs in multiple brain regions as compared with those in control mice, with magnitudes highly correlating with both brain and blood TDP levels. There were no significant differences in the changes of FDG SUVRs in observed brain regions between amyloid precursor protein/presenilin-1 and wild-type mice following thiamine deficiency.
Conclusions: We demonstrate, for the first time to our knowledge, in vivo that TDP reduction strongly correlates with brain glucose hypometabolism, whereas amyloid deposition does not. Our study provides new insight into the pathogenesis and therapeutic strategy for AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831864 | PMC |
http://dx.doi.org/10.1186/s13195-018-0354-2 | DOI Listing |
Neurochem Res
January 2025
Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Wuhua District, Kunming, Yunnan, 650101, PR China.
Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.
Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.
Alzheimers Dement
December 2024
Sapienza University of Rome, Rome, Rome, Italy.
Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indian Institute of Technology, Gandhinagar, India.
Background: Diabetes is a modifiable risk factor for Alzheimer's disease, and GLUT4, an insulin-dependent transporter, plays a crucial role in insulin-resistant conditions and, consequently, in diabetes development. The study aimed to investigate the relationship between tau pathology and insulin resistance by quantifying GLUT4 expression and glucose concentration.
Method: Initially, SH-SY5Y cells underwent transfection with either a wild-type tau plasmid or a mutant tau plasmid.
Alzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Ischemic stroke (IS) is a risk factor for developing Alzheimer's disease (AD). In this context, microglial activation is a shared cellular response to these two conditions that can be either beneficial or detrimental. Previous research has established that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) treatment leads to enhanced functional recovery and reduced brain infarct volume in animal IS models.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!