Background: Hypertension is a risk factor for both cardiovascular diseases (CVDs) and type 2 diabetes (T2D). Angiopoietin-like proteins (ANGPTLs), mainly ANGPTL3, ANGPTL4 and ANGPTL8, are associated with increased plasma lipid content due to their role in regulating the activity of lipoprotein lipase, a key enzyme in metabolism of the lipoprotein in circulation. Dyslipidaemia is a risk factor for hypertension development; however, the roles of ANGPTL3, ANGPTL4 and ANGPTL8 in subjects with hypertension have not yet been established. This study compared the plasma and adipose tissue levels of ANGPTL3, ANGPTL4 and ANGPTL8 in age- and body mass index-matched subjects with and without hypertension.
Methods: A total of 119 subjects, including 69 hypertensive and 50 non-hypertensive subjects, were enrolled. ANGPTL3, ANGPTL4 and ANGPTL8 plasma levels were measured by ELISA, whereas their levels in adipose tissue were assessed via real-time PCR.
Results: We found that ANGPTL4 (202.49 ± 17.44 ng/mL vs. 160.64 ± 10.36 ng/mL, p = 0.04) and ANGPTL8 levels (2310.96 ± 194.88 pg/mL vs. 1583.35 ± 138.27 pg/mL, p = 0.001) were higher in hypertensive subjects than non-hypertensive subjects. However, ANGPTL3 levels were not significantly different between the two populations. Similarly, ANGPTL4 and ANGPTL8 levels were also elevated in subjects with T2D and hypertension than in those with T2D but not hypertension. Additionally, people with highest tertiles of ANGPTL8 had higher odds of having hypertension (odd ratio [OR] = 3.8, 95% confidence interval [CI] = (1.5-9.8), p-Value = 0.005. Similar to its plasma levels, ANGPTL4 and ANGPTL8 were higher in adipose tissue.
Conclusions: In conclusion, our data illustrate that ANGPTL4 and ANGPTL8 levels in both plasma and adipose tissues are increased in subjects with hypertension. The elevated levels of ANGPTL4 and ANGPTL8 in hypertensive subjects highlight their potential involvement, their potential role as biomarkers for hypertension and their therapeutic value in hypertension given their roles in regulating lipid metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831738 | PMC |
http://dx.doi.org/10.1186/s12944-018-0681-0 | DOI Listing |
iScience
December 2024
Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait.
Angiopoietin-like protein 8 (Angptl8), expressed in the liver and adipocytes, forms a complex with Angptl3 or Angptl4, which regulates lipoprotein lipase and triglyceride metabolism. However, the precise functions of adipocyte Angptl8 remain elusive. Here we report that adipocyte-specific inducible Angptl8-knockout (AT-A8-KO) male mice on normal diet showed minor phenotypic changes, but after a high-fat high fructose (HFHF) diet, exhibited decreased body weight gain and glycemia, elevated rectal temperature and early dark phase energy expenditure compared to the Cre controls.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan.
Circulation
October 2024
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.).
J Clin Med
September 2024
Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA.
Over 50% of patients who take statins are still at risk of developing atherosclerotic cardiovascular disease (ASCVD) and do not achieve their goal LDL-C levels. This residual risk is largely dependent on triglyceride-rich lipoproteins (TRL) and their remnants. In essence, remnant cholesterol-rich chylomicron (CM) and very-low-density lipoprotein (VLDL) particles play a role in atherogenesis.
View Article and Find Full Text PDFJCI Insight
August 2024
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
Fuel substrate switching between carbohydrates and fat is essential for maintaining metabolic homeostasis. During aerobic exercise, the predominant energy source gradually shifts from carbohydrates to fat. While it is well known that exercise mobilizes fat storage from adipose tissues, it remains largely obscure how circulating lipids are distributed tissue-specifically according to distinct energy requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!