Crystal structure of B-cell co-receptor CD19 in complex with antibody B43 reveals an unexpected fold.

Proteins

Janssen Research and Development, LLC, 1400 McKean Road, Spring House, Pennsylvania, 19477.

Published: May 2018

AI Article Synopsis

  • CD19 is a protein found on cancerous B cells, making it a valuable target for therapies using monoclonal antibodies.
  • Anti-CD19 antibody B43 is part of a treatment called blinatumomab, which has shown effectiveness for relapsed acute lymphoblastic leukemia.
  • The crystal structure of B43, both bound to and unbound from CD19, reveals important details about how it binds to the protein and shows a unique structure of CD19 that differs from previous predictions.

Article Abstract

CD19 is a transmembrane protein expressed on malignant B cells, but not in other lineages or other tissues, which makes it an attractive target for monoclonal antibody-mediated immunotherapy. Anti-CD19 antibody B43 was utilized in a bispecific T-cell engager (BiTE) blinatumomab that demonstrated potency for the treatment of relapsed acute lymphoblastic leukemia. To gain insight into the mechanism of action of the antibody, the crystal structure of B43 Fab was determined in complex with CD19 and in the unbound form. The structure revealed the binding epitope, explained the lack of cross-reactivity toward non-human species, and suggested the key-and-lock mechanism of antigen recognition. Most unexpectedly, the structure revealed a unique molecular topology of CD19. Rather than a tandem of c-type immunoglobulin folds predicted from the amino acid sequence, the extracellular domain of CD19 exhibits an elongated β-sandwich formed by two immunoglobulin folds by swapping their C-terminal halves. This is the first structure of CD19, which has no sequence homologs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.25485DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
antibody b43
8
structure revealed
8
immunoglobulin folds
8
cd19
6
structure b-cell
4
b-cell co-receptor
4
co-receptor cd19
4
cd19 complex
4
complex antibody
4

Similar Publications

Neuroprotective Indole Alkaloids from the Soil-Derived Fungus sp. XZ8.

J Nat Prod

January 2025

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.

A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.

View Article and Find Full Text PDF

Debus-Radziszewski Reaction Inspired In Situ "One-Pot" Approach to Construct Luminescent Zirconium-Organic Frameworks.

Inorg Chem

January 2025

Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.

Metal-organic frameworks have received extensive development in the past three decades, which are generally constructed via the reaction between inorganic building units and commercially available or presynthesized organic linkers. However, the presynthesis of organic linkers is usually time-consuming and unsustainable due to multiple-step separation and purification. Therefore, methodology development of a new strategy is fundamentally important for the construction and further exploration of the applications of MOFs.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Efficient Catalysis for Zinc-Air Batteries by Multiwalled Carbon Nanotubes-Crosslinked Carbon Dodecahedra Embedded with Co-Fe Nanoparticles.

Small

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.

The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!