Objective: Corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, is a noninvasive and objective imaging biomarker for identifying small nerve fiber damage. We have evaluated the diagnostic performance of previously established CCM parameters to a novel automated measure of corneal nerve complexity called the corneal nerve fiber fractal dimension (ACNFrD).

Methods: A total of 176 subjects (84 controls and 92 patients with type 1 diabetes) with and without diabetic sensorimotor polyneuropathy (DSPN) underwent CCM. Fractal dimension analysis was performed on CCM images using purpose-built corneal nerve analysis software, and compared with previously established manual and automated corneal nerve fiber measurements.

Results: Manual and automated subbasal corneal nerve fiber density (CNFD) (P < 0.0001), length (CNFL) (P < 0.0001), branch density (CNBD) (P < 0.05), and ACNFrD (P < 0.0001) were significantly reduced in patients with DSPN compared to patients without DSPN. The areas under the receiver operating characteristic curves for identifying DSPN were comparable: 0.77 for automated CNFD, 0.74 for automated CNFL, 0.69 for automated CNBD, and 0.74 for automated ACNFrD.

Conclusions: ACNFrD shows comparable diagnostic efficiency to identify diabetic patients with and without DSPN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830988PMC
http://dx.doi.org/10.1167/iovs.17-23342DOI Listing

Publication Analysis

Top Keywords

corneal nerve
28
nerve fiber
16
fractal dimension
12
patients dspn
12
corneal
8
diabetic sensorimotor
8
sensorimotor polyneuropathy
8
manual automated
8
074 automated
8
nerve
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!