Background/aims: Nephrolithiasis is a common and frequently occurring disease, its exact pathogenesis is remains unclear. Emerging data suggest that autophagy plays a vital role in the pathophysiological processes of kidney diseases. Therefore, this study was designed to investigate the potential role of autophagy in the formation of calcium oxalate (CaOx) kidney stones in rat model.
Methods: Thirty-two rats were randomly divided into four groups (eight rats/group): untreated control group, stone model group, rapamycin-treated group, chloroquine-treated group. Rat models of CaOx nephrolithiasis was administration of 0.75% ethylene glycol (EG) in their drinking water for 4 weeks. Western blot and transmission electron microscope (TEM) were used to detect the expression of autophagy related protein LC3-II, BECN1 and p62 and autophagic vacuoles respectively. Renal function was evaluated by measuring the levels of serum CRE and BUN. Renal tubular injury markers NGAL and Kim-1 was determined by ELISA kits. Von Kossa staining was used to assess crystal deposits and histological tissue injury. TUNEL staining was employed to assess apoptosis of the renal tubular cell.
Results: Compare with the controls, the expression of autophagy related protein LC3-II, BECN1 and number of autophagic vacuoles were increased significantly, whereas the p62 protein level was decreased in the stone model group. The levels of apoptosis, serum CRE and BUN, NGAL and Kim-1 in the stone model group were increased compared with the control group and crystals deposition and renal injury were increased significantly. However, the levels of autophagy, kidney injury and crystal deposition were decreased by chloroquine but increased by rapamycin.
Conclusion: These findings suggested that rats were administration of ethylene glycol could lead to the formation of CaOx nephrolithiasis and autophagy activation. Inhibiting autophagy could be an effective therapeutic approach for decreasing the formation of nephrolithiasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000487678 | DOI Listing |
J Org Chem
January 2025
Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
Arynes are important synthetic intermediates that are usually generated under alkaline conditions. We developed a method for generating arynes using two hydroxy compounds as activators. -Triazenylarylboronic acids generate (hetero)arynes when activated by a combination of ethylene glycol, pinacol, and -nitrophenol; these arynes then react with a range of arynophiles under slightly acidic conditions that complement the conventional basic conditions with unique chemoselectivities observed even in the presence of excess hydroxy compounds.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
Zircaloy-4 (Zr-4) is widely used as the cladding material in nuclear power plants (NPPs) due to its excellent corrosion resistance and low neutron absorption cross-section. Under Loss of Coolant Accident (LOCA) conditions, oxidation of Zr-4 can compromise the safety of the NPPs by accelerating hydrogen production. Therefore, enhancing the oxidation resistance of Zr-4 is a critical research focus.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:
A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Solvent environment may significantly affect the equilibria involving flexible solute species, such as proteins and polymers. In the present work, a computation scheme is formulated for the change in the excess chemical potential of a flexible solute molecule upon variation of the solvent condition. The formulation adopts the scheme of error minimization in parallel to the method of Bennett acceptance ratio, and an exact expression is presented that provides the change in the excess chemical potential from solvation free energies computed in two solvent conditions of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!