Chemodynamic therapy (CDT) utilizes iron-initiated Fenton chemistry to destroy tumor cells by converting endogenous H O into the highly toxic hydroxyl radical ( OH). There is a paucity of Fenton-like metal-based CDT agents. Intracellular glutathione (GSH) with OH scavenging ability greatly reduces CDT efficacy. A self-reinforcing CDT nanoagent based on MnO is reported that has both Fenton-like Mn delivery and GSH depletion properties. In the presence of HCO , which is abundant in the physiological medium, Mn exerts Fenton-like activity to generate OH from H O . Upon uptake of MnO -coated mesoporous silica nanoparticles (MS@MnO NPs) by cancer cells, the MnO shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn , resulting in GSH depletion-enhanced CDT. This, together with the GSH-activated MRI contrast effect and dissociation of MnO , allows MS@MnO NPs to achieve MRI-monitored chemo-chemodynamic combination therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201712027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!