The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-018-1867-3 | DOI Listing |
Alzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFMol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Neurophysiology and NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy.
View Article and Find Full Text PDFEMBO J
January 2025
Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!