A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

and crystallographic studies identify key structural features of biliverdin IXβ reductase inhibitors having nanomolar potency. | LitMetric

Heme cytotoxicity is minimized by a two-step catabolic reaction that generates biliverdin (BV) and bilirubin (BR) tetrapyrroles. The second step is regulated by two non-redundant biliverdin reductases (IXα (BLVRA) and IXβ (BLVRB)), which retain isomeric specificity and NAD(P)H-dependent redox coupling linked to BR's antioxidant function. Defective BLVRB enzymatic activity with antioxidant mishandling has been implicated in metabolic consequences of hematopoietic lineage fate and enhanced platelet counts in humans. We now outline an integrated platform of and crystallographic studies for the identification of an initial class of compounds inhibiting BLVRB with potencies in the nanomolar range. We found that the most potent BLVRB inhibitors contain a tricyclic hydrocarbon core structure similar to the isoalloxazine ring of flavin mononucleotide and that both xanthene- and acridine-based compounds inhibit BLVRB's flavin and dichlorophenolindophenol (DCPIP) reductase functions. Crystallographic studies of ternary complexes with BLVRB-NADP-xanthene-based compounds confirmed inhibitor binding adjacent to the cofactor nicotinamide and interactions with the Ser-111 side chain. This residue previously has been identified as critical for maintaining the enzymatic active site and cellular reductase functions in hematopoietic cells. Both acridine- and xanthene-based compounds caused selective and concentration-dependent loss of redox coupling in BLVRB-overexpressing promyelocytic HL-60 cells. These results provide promising chemical scaffolds for the development of enhanced BLVRB inhibitors and identify chemical probes to better dissect the role of biliverdins, alternative substrates, and BLVRB function in physiologically relevant cellular contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900782PMC
http://dx.doi.org/10.1074/jbc.RA118.001803DOI Listing

Publication Analysis

Top Keywords

crystallographic studies
12
redox coupling
8
blvrb inhibitors
8
reductase functions
8
blvrb
6
studies identify
4
identify key
4
key structural
4
structural features
4
features biliverdin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!