A cellulose nanofiber board (CNF-board) with a nominal thickness of 3 mm was fabricated without adhesive or additive. To provide comparison, a cellulose fiber board (CF-board) was also fabricated. A novel cold pre-press apparatus was made to dewater highly absorbent CNF gel prior to drying. A mild drying condition in the vacuum oven at 70 °C and 0.005 MPa was enough to provide the CNF-board with a density of 1.3 g/cm thanks to its self-densification capability. Unlike the CF-board, the fabricated CNF-board had a high water-activated dimensional recovery ratio (averagely 96%) during the five cyclic wetting-drying process. The flexural and tensile strengths of CNF-board obtained were 162 MPa and 85 MPa, respectively. The corresponding values for CF-board were 28 MPa and 11 MPa, respectively. The specific flexural and tensile strengths of CNF-board obtained were higher than those of CF-board as well as some other traditional wood-based composites, polymers and structural ASTM A36 steel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.01.081 | DOI Listing |
Pest Manag Sci
January 2025
College of Plant Protection, Shanxi Agricultural University, Taigu, China.
Background: As sex pheromones are environmentally friendly and specific, they are often used to monitor and control oriental fruit moths (OFMs). Currently, non-biodegradable polymers are commonly employed as carriers to prepare controlled sex pheromone release systems for plant protection. Electrospinning is a relatively simple technique for preparing biodegradable nanofibers that allows for the controlled release of sex pheromones.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Poly (lactic acid) (PLA) is a widely produced bio-based polymer known for its biodegradability and renewability, but its brittleness, low heat resistance, and weak mechanical properties limit its broader use. To address these challenges, TEMPO-oxidized cellulose nanofibers (TOCNF) were extracted from dissolving pulp using TEMPO oxidation and high-pressure homogenization. These TOCNF were modified with silane to reduce hydrophilicity and improve compatibility with PLA.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China.
In the last few years, cellulose has garnered much interest for its application in drug delivery, especially in cancer therapy. It has special properties like biocompatibility, biodegradability, high porosity, and water permeability render it a good candidate for developing efficient carriers for anticancer agents. Cellulose based nanomaterials like cellulose nanofibers, bacterial cellulose, cellulose nanocrystals and microcrystalline cellulose as delivery vehicles for targeted drug delivery to cancer cells are reviewed.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!