Amygdalin, named as 'laetrile' and 'vitamin B-17' was initially supposed to be a safe drug for cancer treatment and was recognized by followers of natural medicine since it has been considered to be hydrolyzed only in cancer cells releasing toxic hydrogen cyanide (HCN), and thus destroying them. Unfortunately, current studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism. However, there have still been research works conducted on anti-cancer properties of this compound. In vitro experiments have shown induction of apoptosis by amygdalin as a result of increased expression of Bax protein and caspase-3 and reduced expression of antiapoptotic BcL-2protein. Amygdalin has also been shown to inhibit the adhesion of breast cancer cells, lung cancer cells and bladder cancer cells by decreased expression of integrin's, reduction of catenin levels and inhibition of the Akt-mTOR pathway, which may consequently lead to inhibition of metastases of cancer cells. It has also been revealed that amygdalin in renal cancer cells increased expression of p19 protein resulting in inhibition of cell transfer from G1-phase to S-phase, and thus inhibited cell proliferation. Other studies have indicated that amygdalin inhibits NF-kβ and NLRP3 signaling pathways, and consequently has anti-inflammatory effect due to reducing the expression of proinflammatory cytokines such as pro-IL-1β. Moreover, the effect of amygdalin on TGFβ/CTGF pathway, anti-fibrous activity and expression of follistatin resulting in activation of muscle cells growth has been reported. This compound might be applicable in the treatment of various cancer cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08923973.2018.1441301 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFTIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.
View Article and Find Full Text PDFJ Kidney Cancer VHL
December 2024
Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Medicine, Shanghai University, Shanghai, China.
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!