Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers.

J Colloid Interface Sci

Department of Fiber- and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden; Department of Fiber- and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden. Electronic address:

Published: June 2018

Macroscopic beads of water-based gels consisting of uncharged and partially charged β-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.02.052DOI Listing

Publication Analysis

Top Keywords

gel beads
8
contributions swelling
8
swelling delignified
8
delignified plant
8
plant fibers
8
internal structure
8
cellulose-rich fibers
8
beads
6
swelling
5
fibers
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!