Background: The use of surgical cochlear nerve decompression is controversial. This study aimed at investigating the safety and validity of microsurgical decompression via an endoscope-assisted retrosigmoid approach to treat tinnitus in patients with neurovascular compression of the cochlear nerve.
Case Description: Three patients with disabling tinnitus resulting from a loop in the internal auditory canal were evaluated with magnetic resonance imaging and tests of pure tone auditory, tinnitus, and auditory brain response (ABR) to identify the features of the cochlear nerve involvement. We observed a loop with a caliber greater than 0.8 mm in all patients. Patients were treated via an endoscope-assisted retrosigmoid microsurgical decompression. After surgery, none of the patients reported short-term or long-term complications. After surgery, tinnitus resolved immediately in 2 patients, whereas in the other patient symptoms persisted although they improved; in all patients, hearing was preserved and ABR improved.
Conclusion: Microsurgical decompression via endoscope-assisted retrosigmoid approach is a promising, safe, and valid procedure for treating tinnitus caused by cochlear nerve compression. This procedure should be considered in patients with disabling tinnitus who have altered ABR and a loop that has a caliber greater than 0.8 mm and is in contact with the cochlear nerve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2018.02.105 | DOI Listing |
J Otol
July 2024
Department of Audiology, All India Institute of Speech and Hearing, Mysuru, Karnataka, India.
Purpose: The present systematic review examined imaging findings in the Auditory Neuropathy Spectrum Disorder (ANSD) population.
Methods: Electronic databases such as Pub Med, Google Scholar, J Gate, and Science Direct were used to conduct a literature search. The articles retrieved through the literature search were assessed in two stages.
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
To explore the value of high resolution computed tomography(HRCT) combined with Magnetic Resonance Imaging(MRI) in the diagnosis of inner ear malformation. HRCT and MRI data of 82 patients with inner ear malformations were analyzed retrospectively. HRCT MPR and CPR reconstruction of the inner ear structure, facial nerve canal and oblique sagittal MRI reconstruction of the internal auditory canal were performed.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
Cochlear nerve deficiency(CND) is a rare inner ear malformation characterized by a hypoplastic or absent cochlear nerve, resulting in variable hearing loss or total deafness, depending on the quantity of nerve fibers present. About 18% of congenital hearing loss are associated with CND. It is a disease of uncertain cause.
View Article and Find Full Text PDFVestn Otorinolaringol
December 2024
St. Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia.
Unlabelled: The article is devoted to the problem of the rehabilitation stage of cochlear implantation in patients with inner ear abnormalities. It provides a detailed analysis of the audiological characteristics of such patients and draws conclusions about approaches to interpreting diagnostic data and speech processors fitting.
Material And Methods: The track records of 80 patients with abnormalities of the inner ear development were retrospectively studied, of which 10 had abnormal structure of the auditory nerve.
Biotechnol J
December 2024
Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany.
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!