Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera.

Insect Biochem Mol Biol

Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India. Electronic address:

Published: April 2018

Potato type II protease inhibitors (Pin-II PIs) impede the growth of lepidopteran insects by inhibiting serine protease-like enzymes in the larval gut. The three amino acid reactive centre loop (RCL) of these proteinaceous inhibitors is crucial for protease binding and is conserved across the Pin-II family. However, the molecular mechanism and inhibitory potential of the RCL tripeptides in isolation of the native protein has remained elusive. In this study, six peptides corresponding to the RCLs of the predominant Pin-II PIs were identified, synthesized and evaluated for in vitro and in vivo inhibitory activity against serine proteases of the polyphagous insect, Helicoverpa armigera. RCL peptides with sequences PRN, PRY and TRE were found to be potent inhibitors that adversely affected the growth and development of H. armigera. The binding mechanism and differential affinity of the RCL peptides with serine proteases was delineated by crystal structures of complexes of the RCL peptides with trypsin. Residues P1 and P2 of the inhibitors play a crucial role in the interaction and specificity of these inhibitors. Important features of RCL peptides like higher inhibition of insect proteases, enhanced efficacy at alkaline gut pH, longer retention and high stability in insect gut make them suitable molecules for the development of sustainable pest management strategies for crop protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2018.02.001DOI Listing

Publication Analysis

Top Keywords

rcl peptides
16
reactive centre
8
centre loop
8
potato type
8
type protease
8
protease inhibitors
8
helicoverpa armigera
8
pin-ii pis
8
serine proteases
8
inhibitors
6

Similar Publications

Mass spectrometric detection of neutrophil elastase cleaved corticosteroid binding globulin and its association with Asn347 site glycosylation, in septic shock patients.

Clin Chim Acta

February 2025

Department of Medicine, University of Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Australia; Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Australia.

Background: Corticosteroid-binding globulin (CBG) modulates tissue cortisol availability via modification of cortisol:CBG binding affinity in response to multiple factors, including neutrophil elastase (NE) cleavage of the reactive centre loop (RCL), converting high affinity CBG (haCBG) to low affinity CBG (laCBG). In vitro, glycosylation of the RCL at Asn347 affects NE cleavage susceptibility. To date, no direct measurement of laCBG, which would verify NE cleavage, has been reported.

View Article and Find Full Text PDF

Background: The serine protease like (Spl) proteases of are a family of six proteases whose function and impact on virulence are poorly understood. Here we propose alpha-1-antitrypsin (AAT), an important immunomodulatory serine protease inhibitor as target of SplD, E and F. AAT is an acute phase protein, interacting with many proteases and crucial for prevention of excess tissue damage by neutrophil elastase during the innate immune response to infections.

View Article and Find Full Text PDF

A tick saliva serpin, IxsS17 inhibits host innate immune system proteases and enhances host colonization by Lyme disease agent.

PLoS Pathog

February 2024

Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.

Lyme disease (LD) caused by Borrelia burgdorferi is among the most important human vector borne diseases for which there is no effective prevention method. Identification of tick saliva transmission factors of the LD agent is needed before the highly advocated tick antigen-based vaccine could be developed. We previously reported the highly conserved Ixodes scapularis (Ixs) tick saliva serpin (S) 17 (IxsS17) was highly secreted by B.

View Article and Find Full Text PDF

Mesothelin CAR T Cells Secreting Anti-FAP/Anti-CD3 Molecules Efficiently Target Pancreatic Adenocarcinoma and its Stroma.

Clin Cancer Res

May 2024

Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

Purpose: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells).

View Article and Find Full Text PDF

Position-specific N- and O-glycosylation of the reactive center loop impacts neutrophil elastase-mediated proteolysis of corticosteroid-binding globulin.

J Biol Chem

January 2024

School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan. Electronic address:

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!