Pyrimidine nucleotide synthesis in the emerging pathogen Pseudomonas monteilii.

Can J Microbiol

Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429, USA.

Published: June 2018

Regulation of pyrimidine biosynthesis by pyrimidines in the emerging, opportunistic human pathogen Pseudomonas monteilii ATCC 700476 was evident. When wild-type cells were grown on succinate in the presence of uracil or orotic acid, the activities of all 5 pyrimidine biosynthetic enzymes were depressed while the activities of 3 of the enzymes decreased in glucose-grown cells supplemented with uracil or orotic acid compared with unsupplemented cells. Pyrimidine limitation of succinate- or glucose-grown pyrimidine auxotrophic cells lacking orotate phosphoribosyltransferase activity resulted in more than a doubling of the pyrimidine biosynthetic enzyme activities relative to their activities in uracil-grown cells. Independent of carbon source, pyrimidine-limited cells of the pyrimidine auxotrophic cells deficient for dihydroorotase activity generally resulted in a slight elevation or depression of the pyrimidine biosynthetic enzyme activities compared with their activities in cells grown under saturating uracil conditions. Aspartate transcarbamoylase activity in P. monteilii was regulated at the enzyme activity level, since the enzyme was strongly inhibited by CTP, UMP, GMP, GDP, ADP, and UTP. In summary, the regulation of pyrimidine biosynthesis in P. monteilii could be used to control its growth or to differentiate it biochemically from other related species of Pseudomonas.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjm-2018-0015DOI Listing

Publication Analysis

Top Keywords

pyrimidine biosynthetic
12
pyrimidine
9
pathogen pseudomonas
8
pseudomonas monteilii
8
regulation pyrimidine
8
pyrimidine biosynthesis
8
cells
8
cells grown
8
uracil orotic
8
orotic acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!