Chemistry through cocrystals: pressure-induced polymerization of CH·CH to an extended crystalline hydrocarbon.

Phys Chem Chem Phys

Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road Northwest, Washington, D.C. 20015, USA.

Published: March 2018

The 1 : 1 acetylene-benzene cocrystal, CH·CH, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy. CH·CH is stable up to 30 GPa, nearly 10× the observed polymerization pressure for molecular acetylene to polyacetylene. Upon mild heating at 30 GPa, the cocrystal was observed to undergo an irreversible transition to a mixture of amorphous hydrocarbon and a crystalline phase with similar diffraction to i-carbon, a nanodiamond polymorph currently lacking a definitive structure. Characterization of this i-carbon-like phase suggests that it remains hydrogenated and may help explain previous observations of nanodiamond polymorphs. Potential reaction pathways in CH·CH are discussed and compared with other theoretical extended hydrocarbons that may be obtained through crystal engineering. The cocrystallization of benzene with other more inert gases may provide a novel pathway to selectively control the rich chemistry of these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp07852hDOI Listing

Publication Analysis

Top Keywords

chemistry cocrystals
4
cocrystals pressure-induced
4
pressure-induced polymerization
4
ch·ch
4
polymerization ch·ch
4
ch·ch extended
4
extended crystalline
4
crystalline hydrocarbon
4
hydrocarbon 1  1
4
1  1 acetylene-benzene
4

Similar Publications

Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications.

ACS Mater Lett

January 2025

Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.

Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.

View Article and Find Full Text PDF

Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.

View Article and Find Full Text PDF

Hexaanionic cyclophosphazenate ligands [(RN)PN] provide versatile platforms for the assembly of multinuclear metal arrays due to their multiple coordination sites and highly flexible ligand core structure. This work investigates the impact of incrementally increasing the steric demand of the ligand periphery on the coordination behavior of ethylzinc arrays. It shows that the increased congestion around the ligand sites is alleviated by progressive condensation with the elimination of diethylzinc.

View Article and Find Full Text PDF

The cocrystal (or supramolecular complex) between the Cu(II) complex of salicylic acid and uncoordinated piracetam has been synthesized. Its structure is characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, and X-ray crystallography. Spectroscopic methods confirm the formation of the metal complex, while X-ray crystallography establishes the molecular and crystal structure of the obtained compound.

View Article and Find Full Text PDF

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!