Polarization Microscopy and Infrared Microspectroscopy of Integument Coverings of Diapausing Larvae in Two Distantly Related Nonsocial Bees.

Microsc Microanal

2Division of Invertebrate Zoology,American Museum of Natural History,Central Park West, 79th St.,New York,NY 10024,USA.

Published: February 2018

The larvae of the two distantly related nonsocial bees Ericrocis lata (Apidae) and Hesperapis (Carinapis) rhodocerata (Melittidae), which develop mostly under arid desert areas of North America, and that differ in that they either spin (E. lata) or do not spin (H. rhodocerata) protective cocoons before entering diapause, produce transparent films that cover the larval integument. To understand the nature of these films, their responses to topochemical tests and their characteristics when examined with fluorescence and high-performance polarization microscopy and microspectroscopy were studied. A positive staining by Sudan black B, birefringence of negative sign, and a Fourier transform-infrared (FT-IR) spectrum typical of lipids were detected for the integument covering of both species. The FT-IR signature, particularly, suggests a wax chemical composition for these lipid coverings, resembling the waxes that are used as construction materials in the honey cells produced by social bees. Considering the arid environmental conditions under which these larvae develop, we hypothesize that their covering films may have evolved as protection against water depletion. This hypothesis seems especially appropriate for H. rhodocerata larvae, which are capable of undergoing a long diapause period in the absence of a protective cocoon.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927618000053DOI Listing

Publication Analysis

Top Keywords

polarization microscopy
8
larvae distantly
8
distantly nonsocial
8
nonsocial bees
8
microscopy infrared
4
infrared microspectroscopy
4
microspectroscopy integument
4
integument coverings
4
coverings diapausing
4
larvae
4

Similar Publications

Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss.

Colloids Surf B Biointerfaces

December 2024

Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070,  PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.

Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.

View Article and Find Full Text PDF

Enhanced Photothermal/Immunotherapy under NIR Irradiation Based on Hollow Mesoporous Responsive Nanomotor.

Inorg Chem

December 2024

Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.

In this research, a hollow mesoporous responsive nanomotor was proposed for enhanced photothermal/immunotherapy under near infrared (NIR) irradiation. HA-HMCuS/AS as the nanomotor composed of hollow mesoporous copper sulfide (HMCuS) loaded with artesunate (AS) and hyaluronic acid (HA) was utilized to induce the polarization of tumor-associated macrophages. At the beginning, ResNet18 deep learning model was utilized to predict the Brunauer-Emmett-Teller (BET) surface area of HMCuS based on the morphology data set which was obtained from our conventional research.

View Article and Find Full Text PDF

Unraveling Serial Degradation Pathways of Supported Catalysts through Reliable Electrochemical Liquid-Cell TEM Analysis.

J Am Chem Soc

December 2024

Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Electrochemical liquid-cell transmission electron microscopy (e-LCTEM) offers great potential for investigating the structural dynamics of nanomaterials during electrochemical reactions. However, challenges arise from the difficulty in achieving the optimal electrolyte thickness, leading to inconsistent electrochemical responses and limited spatial resolution. In this study, we present advanced e-LCTEM techniques tailored for tracking Pt/C degradation under electrochemical polarization at short intervals with high spatial resolution.

View Article and Find Full Text PDF

CoP-Enhanced CaTiO Single-Electron Oxygen Reduction Piezoelectric Catalysis for HO Production.

Inorg Chem

December 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.

Piezoelectric catalytic production of HO is a novel and environmentally friendly HO production method, and many piezoelectric catalysts are currently being developed. However, all of them have the disadvantages of precious metals as cocatalysts and low catalytic efficiency. Herein, CaTiO was successfully prepared and loaded with the nonprecious metal CoP (CoP/CaTiO) for piezoelectric catalytic production of HO.

View Article and Find Full Text PDF

Raman microscopy of the Cu/LiAlGe(PO) solid electrolyte interphase.

Chem Commun (Camb)

December 2024

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

LiAlGe(PO) (LAGP) is a promising solid-state electrolyte (SSE) for solid-state batteries but suffers from side reactions with Li metal resulting in cracking and interfacial resistance rise which hinders its practical application. Herein, in operando Raman spectroscopy was performed to gain insights into local chemical and structural transformations of the Cu/LAGP interface during cathodic polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!