In vitro And In vivo Immunomodulating Properties of Mesenchymal Stem Cells.

Recent Pat Inflamm Allergy Drug Discov

Department of Biochemistry & Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.

Published: December 2018

AI Article Synopsis

Article Abstract

Background: Mesenchymal Stem Cells (MSCs) are self-renewing, multipotent progenitor cells with multilineage potential to differentiate into all cell types of mesodermal origin, such as adipocytes, osteocytes and chondrocytes. Mesenchymal Stem Cells (MSCs) are adult stem cells which can be isolated from human and animal sources.

Objective: Besides the differentiation potential of MSCs, these also regulate the immune response in numerous ailments. The present review expedites the immunomodulating prospective of MSCs.

Methods: Scrupulous search of the literature and patents available on MSCs and their role in the immunomodulation was carried out using Medline, PubMed, PubMed Central, Science Direct and other scientific databases. The retrieved information has been analyzed and compiled.

Results: MSCs have unique regulation of microenvironment in the host tissue by secreting cytokines and immune-receptors which results in immunomodulatory effects. MSCs can be used as an effective tool in the treatment of chronic diseases because of its property to secrete anti-inflammatory molecules, having multilineage potential and immunomodulation.

Conclusion: The present review is focused on the use of MSCs due to their unique immunomodulatory characteristics. MSCs reach to the site of inflammation and interact with immune cells to bring immunosuppressive and anti-inflammatory effects. Along with these unique therapeutic properties, MSCs may be a useful therapeutic approach for various disorders.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1872213X12666180227105924DOI Listing

Publication Analysis

Top Keywords

stem cells
16
mesenchymal stem
12
mscs
9
cells mscs
8
multilineage potential
8
mscs unique
8
cells
6
vitro vivo
4
vivo immunomodulating
4
immunomodulating properties
4

Similar Publications

From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa.

Domest Anim Endocrinol

January 2025

BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:

This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.

View Article and Find Full Text PDF

Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans.

PLoS Genet

January 2025

Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.

Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.

View Article and Find Full Text PDF

Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!