Optical Properties of Low-Loss Ag Films and Nanostructures on Transparent Substrates.

ACS Appl Mater Interfaces

Department of Advanced Materials Science, Faculty of Engineering , Kagawa University, Hayashicho 2217-20 , Takamatsu , Kagawa 761-0396 , Japan.

Published: March 2018

We demonstrate the fabrication of a low-loss single-crystalline Ag nanostructure deposited on transparent substrates. Our approach is based on an epitaxial growth technique in which a NaCl(001) substrate is used. The NaCl substrate is dissolved in water to allow the Ag film to be transferred onto the desired substrates. Focused ion beam milling is subsequently employed to pattern a nanoarray structure consisting of 200 nanorods. The epitaxial Ag films with nanoarray structures grown in the study exhibited very flat and smooth surfaces having excellent crystallinity and local misorientation of less than 1°. Further, spectroscopic ellipsometry measurements indicated that the imaginary part of the dielectric constant of the single-crystalline film was smaller than that of a conventional polycrystalline film. Moreover, we used the three-dimensional finite-difference time-domain method to analyze the plasmonic properties of the nanoarray structure by considering the actual processed structure. Characteristically, when the SiO substrate was etched by ion beam milling to a depth of 30 nm, the spectrum showed a spectral shape 20% sharper than that of the substrate with no etching (depth: 0 nm). The plasmonic performance of the single-crystalline Ag nanostructure was largely determined by its structural precision and the dielectric properties of the metal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b18367DOI Listing

Publication Analysis

Top Keywords

transparent substrates
8
single-crystalline nanostructure
8
ion beam
8
beam milling
8
nanoarray structure
8
optical properties
4
properties low-loss
4
low-loss films
4
films nanostructures
4
nanostructures transparent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!