Studies of skeletal muscle suggest that the ratio of stiffness to tension will increase in the presence of a slower rate of crossbridge head rotation from the attached perpendicular state (non-force generating) to the attached 45 degree angle state (force generating). Maximum shortening velocity is depressed proportionate with adenosinetriphosphatase activity in pressure overload cardiac hypertrophy. The maximum rate of isometric force generation also is less than normal but active isometric force levels are normal. The myosin isoenzymes of hypertrophied heart muscle are shifted to predominantly slower than normal types. Among a number of possibilities, the overall rate of crossbridge cycling may be less than normal and crossbridge head rotation may be slower. We reasoned that a greater than normal ratio of active elastic stiffness to total tension development in hypertrophy would be suggestive of an alteration from normal in crossbridge dynamics. We studied right ventricular septal papillary muscles from normal rabbits and from rabbits with hypertrophy induced by pulmonary artery constriction. A high level of mechanical activation was obtained by tetanizing the muscles in solutions containing caffeine. Small (less than or equal to 2% muscle length) and rapid (0.8 ms) length perturbations were applied to the preparations with a servo-controlled motor. Active elastic stiffness was estimated from the linear relationship of minimum (for releases) or maximum (for stretches) tension reached during a length change with muscle length change (strain). Although total tetanic tension development was normal in the hypertrophied muscles (p greater than 0.1), active elastic stiffness was greater than normal in hypertrophy (p less than 0.025).(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01907757DOI Listing

Publication Analysis

Top Keywords

active elastic
16
elastic stiffness
16
normal
9
papillary muscles
8
rate crossbridge
8
crossbridge head
8
head rotation
8
isometric force
8
normal crossbridge
8
greater normal
8

Similar Publications

Stress Relaxation and Creep Response of Glassy Hydrogels with Dense Physical Associations.

ACS Appl Mater Interfaces

January 2025

Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide--methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers.

View Article and Find Full Text PDF

Intrinsically Stretchable Motion Sensor Enabled by 3D Graphene Foam Integrated Hydrogel.

Small

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

Stretchable hydrogel devices are highly desirable for their capacity to seamlessly integrate significant stretchability, high conductivity, and exceptional biocompatibility. Nonetheless, the substantial disparity in stiffness between soft hydrogels and commonly rigid electrode materials often leads to pronounced performance fluctuations or even complete failure of sensor circuits in practical applications. Here, the study introduces an intrinsically stretchable graphene-hydrogel strain sensor (GHSS) fabricated by integrating a hydrogel and a 3D graphene foam with very closely matched elastic moduli.

View Article and Find Full Text PDF

Background: Whether medium-term increased water intake alone, or in combination with co-adjuvant nonexercise interventions aimed to expand blood volume (BV), improve the human cardiovascular phenotype and cardiorespiratory fitness remains unexplored.

Objectives: The purpose of this study was to determine the medium-term impact of increased (+40%) fluid (water) intake (IFI) or IFI plus head-up sleep (IFI + HUS) on BV and the cardiovascular phenotype in healthy individuals.

Methods: Healthy adults (n = 35, age 42 ± 18 years, 51% female) matched by sex, age, body composition, physical activity, and cardiorespiratory fitness were randomly allocated to IFI or IFI + HUS for 3 months.

View Article and Find Full Text PDF

Transrectal shear wave elastography (T-SWE) can be used non-invasively to diagnose prostate cancer (PCa) and benign prostatic hyperplasia (BPH). The prostate tissue can be viewed as an ellipsoidal sphere with viscoelastic characterization. Linear elastic model has been used to characterize soft tissues, and the simplification of partial characterization provides incomplete information.

View Article and Find Full Text PDF

Robotic artificial muscles, inspired by the adaptability of biological muscles, outperform rigid robots in dynamic environments due to their flexibility. However, the intrinsic compliance of the soft actuators restricts force transmission capacity and dynamic response. Biological muscle modulates their stiffness and damping, varying viscoelastic properties and force in interaction with the surroundings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!