Water purification by membranes is widely investigated to address concerns related to the scarcity of clean water. Achieving high flux and rejection simultaneously is a difficult challenge using such membranes because these properties are mutually exclusive in common artificial membranes. Nature has developed a method for this task involving water-channel membrane proteins known as aquaporins. Here, the design and fabrication of graphene oxide (GO)-based membranes with a surface-tethered peptide motif designed to mimic the water-selective filter of natural aquaporins is reported. The short RF8 (RFRFRFRF, where R and F represent arginine and phenylalanine, respectively) octapeptide is a concentrated form of the core component of the Ar/R (aromatic/arginine) water-selective filter in aquaporin. The resulting GO-RF8 shows superior flux and high rejection similar to natural aquaporins. Molecular dynamics simulation reveal the unique configuration of RF8 peptides and the transport of water in GO-RF8 membranes, supporting that RF8 effectively emulates the core function of aquaporins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201705944 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!