The Tricuspid valve (TV) annulus is a transition structure from the leaflets to the myocardium, with 3 different annulus segments corresponding to the TV leaflets, which includes both basal leaflets and bordering myocardium. The objective of this study was to understand TV annulus mechanical properties and correlate it to the biological composition. The uniaxial testing of the annulus segments from ten porcine TVs was performed to measure Young's modulus (E) and extensibility (ε). Western blotting and histology were executed. The septal annulus E value (208.7 ± 67.2 kPa) was statistically greater (p < 0.01) than that of the anterior (92.0 ± 66.8 kPa) and the posterior annulus segment (136.8 ± 56.9 kPa) (p < 0.05), respectively. ε among the 3 segments were equivalent (p values < 0.05). Western blotting and histology indicated that collagen was greatest along the septal annulus segment, which is correlated to E values. Collagen fibers from the leaflets inserted into the myocardium and faded out. Collagen content explains greater E and suture strength in the surgical annulus repair and larger resistance to annulus dilation in the septal annulus as compared with other segments. This study elucidates new knowledge of mechanical properties of the basal leaflet-annulus region of the TV annulus, which can be useful for future TV repair techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13239-018-0343-4 | DOI Listing |
Adv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.
View Article and Find Full Text PDFNat Methods
January 2025
Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical Engineering, VŠB -Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
Three types of commercial austenitic stainless steels, 1.4307 (AISI 304 L), 1.4404 (AISI 316 L) 1.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!