Central Asia is a region that has a large land mass, yet meteorological stations in this area are relatively scarce. To address this data issues, in this study, we selected two reanalysis datasets (the ERA40 and NCEP/NCAR) and downscaled them to 40 × 40 km using RegCM. Then three gridded datasets (the CRU, APHRO, and WM) that were extrapolated from the observations of Central Asian meteorological stations to evaluate the performance of RegCM and analyze the spatiotemporal distribution of precipitation and air temperature. We found that since the 1960s, the air temperature in Xinjiang shows an increasing trend and the distribution of precipitation in the Tianshan area is quite complex. The precipitation is increasing in the south of the Tianshan Mountains (Southern Xinjiang, SX) and decreasing in the mountainous areas. The CRU and WM data indicate that precipitation in the north of the Tianshan Mountains (Northern Xinjiang, NX) is increasing, while the APHRO data show an opposite trend. The downscaled results from RegCM are generally consistent with the extrapolated gridded datasets in terms of the spatiotemporal patterns. We believe that our results can provide useful information in developing a regional climate model in Central Asia where meteorological stations are scarce.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832148PMC
http://dx.doi.org/10.1038/s41598-018-21997-4DOI Listing

Publication Analysis

Top Keywords

air temperature
12
central asia
12
meteorological stations
12
gridded datasets
8
distribution precipitation
8
xinjiang increasing
8
tianshan mountains
8
precipitation
5
simulation spatiotemporal
4
spatiotemporal pattern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!