The influence of a high fat diet on bone and soft tissue formation in Matrix Gla Protein knockout mice.

Sci Rep

Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.

Published: February 2018

Studies suggest bone growth and development are influenced by maternal nutrition, during intrauterine and early postnatal life. This study assessed the role of MGP and a maternal high fat diet on vitamin K-dependent proteins' gene expression and their impact on bone formation. Knockout (KO) offspring were smaller than wild type (WT) littermates, yet possessed the same volume of intrascapular brown adipose tissue. The total proportion of body fat was reduced, but only in animals on a control diet. Lung air volume was observed to be comparable in both KO and WT animals on the same diet. The degree of aortic calcification was reduced in KO animals maintained on a HF diet. KO females on the high fat diet showed reduced cortical bone volume and thickness in the femur and tibia. Gene expression levels of GGCX and VKOR were reduced in control fed KO animals suggesting a potential link between gene expression levels of MGP, GGCX, and VKOR and total volumes of bone, calcified soft tissue, and iBAT; with implications for modulation of body length and mass. Our results confirm the important role for vitamin K in bone and calcified soft tissue, but now extend this role to include iBAT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827663PMC
http://dx.doi.org/10.1038/s41598-018-21650-0DOI Listing

Publication Analysis

Top Keywords

high fat
12
fat diet
12
soft tissue
12
gene expression
12
reduced animals
8
expression levels
8
ggcx vkor
8
bone calcified
8
calcified soft
8
diet
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!