A comparative analysis of surface and bulk contributions to second-harmonic generation in centrosymmetric nanoparticles.

Sci Rep

Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom.

Published: February 2018

Second-harmonic generation (SHG) from nanoparticles made of centrosymmetric materials provides an effective tool to characterize many important properties of photonic structures at the subwavelength scale. Here we study the relative contribution of surface and bulk effects to SHG for plasmonic and dielectric nanostructures made of centrosymmetric materials in both dispersive and non-dispersive regimes. Our calculations of the far-fields generated by the nonlinear surface and bulk currents reveal that the size of the nanoparticle strongly influences the amount and relative contributions of the surface and bulk SHG effects. Importantly, our study reveals that, whereas for plasmonic nanoparticles the surface contribution is always dominant, the bulk and surface SHG effects can become comparable for dielectric nanoparticles, and thus they both should be taken into account when analyzing nonlinear optical properties of all-dielectric nanostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826928PMC
http://dx.doi.org/10.1038/s41598-018-21850-8DOI Listing

Publication Analysis

Top Keywords

surface bulk
16
second-harmonic generation
8
centrosymmetric materials
8
shg effects
8
surface
6
bulk
5
comparative analysis
4
analysis surface
4
bulk contributions
4
contributions second-harmonic
4

Similar Publications

Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.

View Article and Find Full Text PDF

Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr.

View Article and Find Full Text PDF

The surface termination of a Fe (III) spin crossover molecular salt.

J Phys Condens Matter

January 2025

Department of Physics and Astronomy, University of Nebraska, 855 North 16th Street, Lincoln , 68588-0299, UNITED STATES.

From a comparison of the known molecular stoichiometry and X-ray photoemission spectroscopy (XPS), it is evident that the Fe(III) spin crossover salt [Fe(qsal)2Ni(dmit)2], where qsal = N(8quinolyl)salicylaldimine, and dmit2- = 1,3-dithiol-2-thione-4,5-dithiolato has a preferential surface termination with the Ni(dmit)2 moiety. This preferential surface termination leads to a significant surface to bulk core level shift for the Ni 2p X-ray photoemission core level, not seen in the corresponding Fe 2p core level spectra. A similar surface to bulk core level shift is seen in Pd 3d in the related [Fe(qsal)2]2Pd(dmit)2, ], where qsal = N(8quinolyl)salicylaldimine, and dmit2- = 1,3-dithiol-2-thione-4,5-dithiolato.

View Article and Find Full Text PDF

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Non-Hermitian Topology in Hermitian Topological Matter.

Phys Rev Lett

December 2024

University of Tokyo, Institute for Solid State Physics, Kashiwa, Chiba 277-8581, Japan.

Non-Hermiticity gives rise to distinctive topological phenomena absent in Hermitian systems. However, connection between such intrinsic non-Hermitian topology and Hermitian topology has remained largely elusive. Here, considering the bulk and boundary as an environment and system, respectively, we demonstrate that anomalous boundary states in Hermitian topological insulators exhibit non-Hermitian topology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!