Impact of airborne zinc pollution on the antimicrobial activity of olive oil and the microbial metabolic profiles of Zn-contaminated soils in an Italian olive orchard.

J Trace Elem Med Biol

School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy. Electronic address:

Published: September 2018

The growing of microbial resistance leads to a great interest about some natural alternatives to synthetic compounds. This study was carried out in two olive orchards (Olea europaea L., cv. Coratina) South Italy (Basilicata region), one located in a polluted area near a fertilizers factory releasing Zn and the other in a control unpolluted site, both managed with similar cultivation techniques. Olive oil samples were studied from both areas during 2014 and 2015. The soil microbiological status of the polluted and unpolluted orchards has been characterized and the antimicrobial effects of olive oils extracted from polluted plants (PP) and control plants (CP) against some phytopathogens have been explored. Results showed that the antibacterial activity of PP oil was significantly higher than CP and this could be due to the high content of some phenolic compounds elicited by air and soil Zn pollution (especially in the layer 0-20 cm). There is no detectable antifungal activity of the studied oils. The metabolic activity (both total and for each carbon substrate group), diversity and evenness of PP soil bacterial communities were significantly different from CP soil, while the effects of soil depth was negligible. The same parameters measured on soil fungal communities are lower in PP soil at 0-20 cm soil depth. The current research clarified the impact of atmospheric Zn pollution on the antimicrobial activity of olive oil and the soil microbial metabolic profiles. The bioactive substances extracted from olive oils growing in Zn-polluted area might be used as antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2018.02.017DOI Listing

Publication Analysis

Top Keywords

olive oil
12
soil
9
pollution antimicrobial
8
antimicrobial activity
8
activity olive
8
microbial metabolic
8
metabolic profiles
8
olive oils
8
soil depth
8
olive
7

Similar Publications

Introduction It has been known that progesterone has central effects, as measured by minimum alveolar concentration in various experimental settings. Previously, we showed that progesterone reduces the sevoflurane requirement for the loss of righting reflex (LORR) using male mice. However, the combination of progesterone and isoflurane has not been studied.

View Article and Find Full Text PDF

The objective of this investigation is to overcome the difficulties in fabricating cost-effective, eco-friendly porous geopolymers (PGs) by integrating Coal fly ash (CFA) and spodumene flotation tailings (SFT). This synthesis utilizes a unique blend of CFA and SFT in a 6:4 mass ratio, with specific attention to optimizing the pore architecture to improve the PGs' efficacy. Key parameters included a modulus of 1.

View Article and Find Full Text PDF

The so-called Mediterranean diet, with olive oil as a key component, is effective in reducing cardiometabolic disease risk. Olive oil consumption improves blood pressure, insulin levels and resistance, supporting heart health and glycemic control. Its phenolic compounds, including oleuropein (OLE), hydroxytyrosol (HT), and tyrosol (TYR) are hypothesized to likely contribute to these benefits.

View Article and Find Full Text PDF

The analysis of mineral oil aromatic hydrocarbons (MOAH) in vegetable oils is currently associated with high uncertainty due to various factors ranging from sample preparation to data interpretation. One significant factor is the coelution of biogenic compounds of terpenic origin with the MOAH fraction during chromatographic analysis. The common purification method is epoxidation, a chemical reaction that changes the polarity of the interferences, allowing their separation from MOAH.

View Article and Find Full Text PDF

Agronomic characteristics, mineral nutrient content, antioxidant capacity, biochemical composition, and fatty acid profile of Iranian pistachio (Pistacia vera L.) cultivars.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, Hatay Olive Research Institute Directorate, General Directorate of Agricultural Research and Policies, Hassa Station, Hassa, Hatay, 31700, Türkiye.

Background: Pistachio (Pistacia vera L.) nuts are among the most popular nuts. The pistachio cultivars are tolerant to both drought and salinity, which is why they are extensively grown in the arid, saline, and hot regions of the Middle East, Mediterranean countries, and the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!