Background: To evaluate the performance of a novel triage system for Transient Ischemic Attack (TIA) units built upon an existent clinical prediction rule (CPR) to reduce time to unit arrival, relative to the time of symptom onset, for true TIA and minor stroke patients. Differentiating between true and false TIA/minor stroke cases (mimics) is necessary for effective triage as medical intervention for true TIA/minor stroke is time-sensitive and TIA unit spots are a finite resource.

Methods: Prospective cohort study design utilizing patient referral data and TIA unit arrival times from a regional fast-track TIA unit on Vancouver Island, Canada, accepting referrals from emergency departments (ED) and general practice (GP). Historical referral cohort (N = 2942) from May 2013-Oct 2014 was triaged using the ABCD2 score; prospective referral cohort (N = 2929) from Nov 2014-Apr 2016 was triaged using the novel system. A retrospective survival curve analysis, censored at 28 days to unit arrival, was used to compare days to unit arrival from event date between cohort patients matched by low (0-3), moderate (4-5) and high (6-7) ABCD2 scores.

Results: Survival curve analysis indicated that using the novel triage system, prospectively referred TIA/minor stroke patients with low and moderate ABCD2 scores arrived at the unit 2 and 1 day earlier than matched historical patients, respectively.

Conclusions: The novel triage process is associated with a reduction in time to unit arrival from symptom onset for referred true TIA/minor stroke patients with low and moderate ABCD2 scores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389093PMC
http://dx.doi.org/10.1186/s12913-018-2952-xDOI Listing

Publication Analysis

Top Keywords

unit arrival
20
novel triage
16
tia/minor stroke
16
stroke patients
12
tia unit
12
unit
9
triage process
8
prospective cohort
8
cohort study
8
triage system
8

Similar Publications

Unlabelled: Out-of-hospital cardiac arrest (OHCA) remains a critical health concern, where prompt access to automated external defibrillators (AEDs) significantly improves survival. This scoping review broadly investigates the feasibility and impact of dronedelivered AEDs for OHCA response.

Methods: PubMed, Cochrane, and Web of Science were searched from inception to August 6, 2024, with eligibility broadly including empirical data.

View Article and Find Full Text PDF

Key Clinical Message: Although the symptoms of accidental chlorine inhalation are typically mild, severe exposure can result in acute respiratory distress syndrome (ARDS). We present a case of pediatric ARDS due to chlorine exposure in which lung lavage and exogenous surfactant were successful in avoiding more invasive and costly treatments.

Abstract: Chlorine inhalation as a result of swimming pool chlorination accidents is relatively common.

View Article and Find Full Text PDF

This study aims to explore the efficacy of neutrophil membrane nanovesicles (NMNVs) in the treatment of acute kidney injury caused by sepsis (S-AKI). Moreover, its effects on renal function indicators in plasma [creatinine (CREA), urea (UREA)], oxidative stress factor [malondialdehyde (MDA)], inflammatory factor [myeloperoxidase (MPO), histone H4 (H4), and macrophage inflammatory protein-2 (MIP-2)] are studied. Sixty SPF grade adult male Wistar rats in a healthy state under natural infection were randomly divided into blank, LSP, and experimental groups, with 20 rats in each group.

View Article and Find Full Text PDF

Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.

View Article and Find Full Text PDF

Assessing drywell designs for managed aquifer recharge via canals and repurposed wells.

Sci Rep

January 2025

USDA, ARS, Sustainable Agricultural Water Systems (SAWS) Unit, UC Davis, 239 Hopkins Road, Davis, CA, 95616, USA.

This study explores innovative drywell designs for managed aquifer recharge (MAR) in agricultural settings, focusing on smaller diameter and deeper drywells, including the repurposing of dried or abandoned wells. Numerical simulations assessed the impact of drywell diameter (5-120 cm), depth (15-55 m), screen height, and subsurface heterogeneity on infiltration (I) and recharge (R) volumes over a one-year period under constant head conditions. Results indicate that smaller diameter drywells can effectively infiltrate and recharge significant water volumes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!