The vitamin A derivative all- trans-retinoic acid (ATRA) is an important biologically active metabolite that regulates a variety of essential biological processes in particular via gene-regulatory mechanisms. In the retina, ATRA is a light-dependent byproduct of the phototransduction cascade. Here, ATRA is not only needed for proper retinal development, but it also acts as a neuromodulator on horizontal cells, second-order inhibitory neurons in the outer retina, which reveal morphological and physiological changes when the retina is treated with ATRA. There is evidence that gene-regulatory mechanisms may only be partially involved in these neuromodulatory processes and the underlying nontranscriptional mechanisms are still elusive. This is, among other things, due to the lack of appropriately labeled ATRA, which would allow the tracking of ATRA in cells or a given tissue. To overcome this obstacle, we designed, synthesized, and evaluated two conjugates of ATRA, one conjugated with biotin (biotin-ATRA) and one conjugated with diaminoterephthalate fluorophore (DAT-ATRA), as molecular tools for different fields of application. The biocompatibility of both compounds was demonstrated via cell viability assays in cultured N2a-cells. N2a-cells exposed to the compounds showed no significant changes in the viability rate. The functionality of synthesized ATRA-conjugates was verified using retinal tissue derived from adult carp. The binding of ATRA-conjugates to distinct retinal cells was assessed in primary cultures of carp retina. Hereby, horizontal and Müller cells have been identified as specific target cells of the new ATRA compounds. Electron microscopy further confirmed that the new substances are still able to induce synaptic plasticity at horizontal cell dendrites resulting in formation of spine synapses, as it is shown for native ATRA. Taken together, the novel ATRA-conjugates represent biocompatible and functional molecular tools, which may further provide the possibility to track ATRA in neuronal cells and study its modulatory effects in different cell systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.7b00452 | DOI Listing |
Stem Cells
January 2025
Sangamo Therapeutics, 501 Canal Blvd. Richmond, CA.
iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production.
View Article and Find Full Text PDFThe prognosis for patients with acute promyelocytic leukemia (APL) has improved dramatically since the introduction of all-trans retinoic acid (ATRA) and intravenous arsenic trioxide (ATO). However, ATO administration requires daily infusions over several months, representing an onerous burden for hospitals and patients. We evaluated the bioavailability of a novel encapsulated oral ATO formulation in APL patients in first complete remission during standard-of-care consolidation.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:
In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States. Electronic address:
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States. Electronic address:
Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!