The anticancer drug bicalutamide was co-milled with either Macrogol 6000 or Poloxamer 407, and the physicochemical parameters that drive the phase transition of binary systems and influence the dissolution modification of bicalutamide were studied. Milled binary systems with reduced particle size were assessed by scanning electron microscopy and laser diffraction measurements. The results of thermal analysis supported by X-ray diffractometry confirmed the reduction of the crystallinity of bicalutamide co-milled with Macrogol 6000. Infrared spectroscopy was used to determine the molecular structure of the samples and indicated weak interactions between drug and polymer molecules. Two mechanisms were identified and were involved in up to 11-fold enhanced dissolution. The first one was based on improved wettability due to a decreased contact angle in samples containing Macrogol 6000. The second one relied on the solubilization of bicalutamide within nanoaggregates formed by Poloxamer 407 that resulted from its surface activity. This finding was confirmed with fluorescence spectroscopy, dynamic light scattering and cryogenic transmission electron microscopy assays. Given the dissolution rate-limited absorption combined with the reduced bioavailability of bicalutamide as a BCS class II drug, the assessment of the mechanisms driving the increase in drug dissolution is of particular importance in drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.02.040DOI Listing

Publication Analysis

Top Keywords

macrogol 6000
12
enhanced dissolution
8
bicalutamide co-milled
8
co-milled macrogol
8
poloxamer 407
8
binary systems
8
electron microscopy
8
bicalutamide
6
drug
5
dissolution solid
4

Similar Publications

The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.

View Article and Find Full Text PDF

Spermine driven water deficit tolerance in early growth phases of sweet corn genotypes under hydroponic cultivation.

Sci Rep

January 2025

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.

View Article and Find Full Text PDF

Background: Strawberry (Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement.

View Article and Find Full Text PDF

Comprehensive analysis of amino acid/auxin permease family genes reveal the positive role of GhAAAP128 in cotton tolerance to cold stress.

Int J Biol Macromol

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Amino acid/auxin permeases (AAAPs) play crucial roles in plant development and response to environmental stimuli. They have been characterized at genome-wide levels in several plant species. However, little is known about the AAAP genes in Gossypium.

View Article and Find Full Text PDF

The aim of this research was to study the effect of plant-growth-promoting bacteria (PGPB) isolated from the drought-tolerant plants camel thorn ( (M.Bieb.) Fisch) and white pigweed ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!