Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation.

PLoS Pathog

Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America.

Published: March 2018

Coxiella burnetii is an intracellular pathogen that causes human Q fever, a disease that normally presents as a severe flu-like illness. Due to high infectivity and disease severity, the pathogen is considered a risk group 3 organism. Full-length lipopolysaccharide (LPS) is required for full virulence and disease by C. burnetii and is the only virulence factor currently defined by infection of an immunocompetent animal. Transition of virulent phase I bacteria with smooth LPS, to avirulent phase II bacteria with rough LPS, occurs during in vitro passage. Semi-rough intermediate forms are also observed. Here, the genetic basis of LPS phase conversion was investigated to obtain a more complete understanding of C. burnetii pathogenesis. Whole genome sequencing of strains producing intermediate and/or phase II LPS identified several common mutations in predicted LPS biosynthesis genes. After passage in broth culture for 30 weeks, phase I strains from different genomic groups exhibited similar phase transition kinetics and elevation of mutations in LPS biosynthesis genes. Targeted mutagenesis and genetic complementation using a new C. burnetii nutritional selection system based on lysine auxotrophy confirmed that six of the mutated genes were necessary for production of phase I LPS. Disruption of two of these genes in a C. burnetii phase I strain resulted in production of phase II LPS, suggesting inhibition of the encoded enzymes could represent a new therapeutic strategy for treatment of Q fever. Additionally, targeted mutagenesis of genes encoding LPS biosynthesis enzymes can now be used to construct new phase II strains from different genomic groups for use in pathogen-host studies at a risk group 2 level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843353PMC
http://dx.doi.org/10.1371/journal.ppat.1006922DOI Listing

Publication Analysis

Top Keywords

phase lps
12
lps biosynthesis
12
phase
11
lps
10
coxiella burnetii
8
risk group
8
phase bacteria
8
biosynthesis genes
8
phase strains
8
strains genomic
8

Similar Publications

Unlabelled: Crohn's disease (CD) is a multifactorial inflammatory bowel disease whose pathogenetic mechanisms are a field of ongoing study. Changes in the intestinal microbiome in CD may influence metabolite production and reflect the disease's severity. We investigate the relationship between trimethylamine N-oxide (TMAO) and lipopolysaccharide-binding protein (LPS) levels and changes in the gut microbiome in patients with CD of various degrees of activity.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.

View Article and Find Full Text PDF

Introduction: Chronic inflammation caused by infections has a significant negative impact on the reproductive system and impairs fertility. The corpus luteum (CL) plays a central role not only in regulating the ovary cycle, but also in implantation of the embryo and maintenance of early pregnancy through the secretion of progesterone. Understanding the intricate interplay between inflammatory processes and reproductive organ's function is crucial for the development of effective therapeutic strategies to alleviate reproductive disorders and improve fertility.

View Article and Find Full Text PDF

Background: Phospholipid transfer protein (PLTP), a glycoprotein widely expressed in the body, is primarily involved in plasma lipoprotein metabolism. Previous research has demonstrated that PLTP can exert anti-inflammatory effects and improve individual survival in patients with sepsis and endotoxemia by neutralizing LPS and facilitating LPS clearance. However, the role of PLTP in sepsis-associated acute kidney injury (SA-AKI) and the specific mechanism of its protective effects are unclear.

View Article and Find Full Text PDF

Immune evasion strategies of Brucella, the etiologic agent of brucellosis, a global zoonosis, remain partially understood. The omentum, a tertiary lymphoid organ part of visceral adipose tissue, has never been explored as a Brucella reservoir. We report that B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!