Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Long-term use of opioid analgesics is limited by tolerance development and undesirable adverse effects. Paradoxically, spinal administration of ultra-low-dose (ULD) G-protein-coupled receptor antagonists attenuates analgesic tolerance. Here, we determined whether systemic ULD α2-adrenergic receptor (AR) antagonists attenuate the development of morphine tolerance, whether these effects extend to the cannabinoid (CB1) receptor system, and if behavioral effects are reflected in changes in opioid-induced spinal gliosis. Male rats were treated daily with morphine (5 mg/kg) alone or in combination with ULD α2-AR (atipamezole or efaroxan; 17 ng/kg) or CB1 (rimonabant; 5 ng/kg) antagonists; control groups received ULD injections only. Thermal tail flick latencies were assessed across 7 days, before and 30 min after the injection. On day 8, spinal cords were isolated, and changes in spinal gliosis were assessed through fluorescent immunohistochemistry. Both ULD α2-AR antagonists attenuated morphine tolerance, whereas the ULD CB1 antagonist did not. In contrast, both ULD atipamezole and ULD rimonabant attenuated morphine-induced microglial reactivity and astrogliosis in deep and superficial spinal dorsal horn. So, although paradoxical effects of ULD antagonists are common to several G-protein-coupled receptor systems, these may not involve similar mechanisms. Spinal glia alone may not be the main mechanism through which tolerance is modulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FBP.0000000000000377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!