Objective: This study aims to evaluate the comparative performance of a resorbable nanofiber wound matrix (Restrata Wound Matrix; Acera Surgical Inc, St Louis, MO) and a bilayered collagen xenograft (Integra Bilayer Matrix Wound Dressing; Integra, Plainsboro, NJ) in healing critical full-thickness cutaneous wounds in a preclinical porcine model.

Materials And Methods: Full-thickness cutaneous wounds were created in Yucatan miniature swine and treated with either the nanofiber wound matrix or xenograft. Wound area was measured and inflammation and healing were assessed until euthanasia at day 15 or 30, at which time tissue samples were harvested for histopathology.

Results: Wounds treated with the nanofiber wound matrix demonstrated significantly faster wound areal reduction, less inflammation, greater neovascularization, more collagen maturation, and superior quality of healing compared with wounds treated with the xenograft.

Conclusions: The nanofiber wound matrix is an effective wound healing material that may offer a unique alternative in the treatment of challenging refractory wounds.

Download full-text PDF

Source

Publication Analysis

Top Keywords

wound matrix
24
nanofiber wound
16
full-thickness cutaneous
12
cutaneous wounds
12
wound
10
treated nanofiber
8
wounds treated
8
matrix
7
wounds
6
efficacy nanofabricated
4

Similar Publications

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.

View Article and Find Full Text PDF

Biomimetic nanostructural materials based on placental amniotic membrane-derived nanofibers for self-healing and anti-adhesion during cesarean section.

Biomaterials

January 2025

Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511462, China. Electronic address:

Cesarean section (CS) is highly prevalent surgery among females. However, current absorbable anti-adhesion membranes used clinically can partially prevent postoperative adhesions but show limited efficacy in tissue regeneration, leaving post-cesarean women at risk for severe complications including cesarean scar pregnancy, placenta previa, and uterine rupture. Herein, we designed a fully amniotic membrane (AM)-derived biomimetic nanostructural materials (AM-BNMs) as an anti-adhesion barrier, and validated its therapeutic efficacy in a rat CS model.

View Article and Find Full Text PDF

Background: In the context of osteoarthritis (OA), a condition marked by joint degeneration, there is a notable absence of efficacious approaches to promote regenerative healing in chondrocytes. Novel therapeutic strategies like nanomicelles-hydrogel microspheres loaded with Astragalus polysaccharide (GelMA@APPA) offer promising avenues for promoting chondrocyte regeneration and mitigating OA progression.

Methods: Astragalus polysaccharide (APS) has been shown to induce chondrocyte proliferation and promote cartilage matrix secretion, demonstrating biological activity associated with chondrocyte regeneration.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!