Mycobacterium fortuitum (MF), a rapidly growing nontuberculosis mycobacterium, is recognized as an important human pathogen. We investigated whether the endoplasmic reticulum (ER) stress response is associated with the apoptosis of MF-infected macrophages. The expression of ER molecular chaperones was significantly induced by MF infection. We found that MF-induced reactive oxygen species (ROS) generation plays a critical role in the induction of ER stress-mediated apoptosis. Excess TNF-α in the ER led to ER stress-mediated apoptosis during MF infection. The intracellular survival of MF was significantly increased by TNF-α knockdown compared with the control. This is the first report of MF-induced TNF-α as a cause of ER stress in macrophages. Furthermore, we found that TLR2-mediated ER stress response contributed to the elimination of intracellular MF in vivo. These results suggest that TNF-α-mediated ER stress during MF infection contributes to the suppression of intracellular survival of MF in macrophages. Our findings provide new insight into the importance of ER stress in mycobacterial infection.-Oh, S.-M., Lim, Y.-J., Choi, J.-A., Lee, J., Cho, S.-N., Go, D., Kim, S.-H., Song, C.-H. TNF-α-mediated ER stress causes elimination of Mycobacterium fortuitum reservoirs by macrophage apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201701407R | DOI Listing |
J Nurs Adm
December 2024
Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.
Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.
Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.
Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.
Proc Natl Acad Sci U S A
January 2025
Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.
Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!