Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While the antibacterial properties of silver nanoparticles (AgNPs) have been demonstrated across a spectrum of bacterial pathogens, the effects of AgNPs on the beneficial bacteria are less clear. To address this issue, we compared the antibacterial activity of AgNPs against two beneficial lactobacilli ( Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei) and two common opportunistic pathogens ( Escherichia coli and Staphylococcus aureus). Our results demonstrate that those lactobacilli are highly susceptible to AgNPs, while the opportunistic pathogens are not. Acidic environment caused by the lactobacilli is associated with the bactericidal effects of AgNPs. Our mechanistic study suggests that the acidic growth environment of lactobacilli promotes AgNP dissolution and hydroxyl radical (•OH) overproduction. Furthermore, increases in silver ions (Ag) and •OH deplete the glutathione pool inside the cell, which is associated with the increase in cellular reactive oxygen species (ROS). High levels of ROS may further induce DNA damage and lead to cell death. When E. coli and S. aureus are placed in a similar acidic environment, they also become more susceptible to AgNPs. This study provides a mechanistic description of a pH-Ag-•OH bactericidal pathway and will contribute to the responsible development of products containing AgNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b17274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!