Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective.

J Phys Chem Lett

Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering , Beijing Institute of Technology, Beijing 100081 , China.

Published: March 2018

To progress from the coin lithium sulfur (Li-S) cell to practical applications, it would be necessary to investigate industrially scalable methods to produce high-quality and large quantities of Li-S configurations. In this Perspective, we focused on the feasibility of scalable production of high-quality and large quantities of cathode composite, the construction of highly safe and highly stable electrolyte, and durable lithium metal anode. The results presented here suggest that the construction of highly secondary microstructures from nanoparticles is the key solution to achieve scalable cathode composite. Developing unconventional electrolyte solvent is a meaningful approach to develop high safety Li-S batteries. The high performance and high stability of lithium metal anode will enlighten the practical application of Li-S batteries. This Perspective presents outlooks for the key scalable techniques of realizable Li-S cell in the near future and provides promising strategies to accomplish long-cycle-life, high-energy-density Li-S batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.7b03165DOI Listing

Publication Analysis

Top Keywords

li-s batteries
12
scalable techniques
8
lithium sulfur
8
batteries perspective
8
li-s cell
8
high-quality large
8
large quantities
8
cathode composite
8
construction highly
8
lithium metal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!