A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1036
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3154
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of in vitro biocompatibility of silicone and polymethyl methacrylate during the curing phase of polymerization. | LitMetric

Adverse events have been reported with acrylic bone cements. However, current test standards for acrylic materials fail to characterize the potentially harmful monomers released during the curing stage. In clinical applications, materials are implanted into the human body during this phase. Silicone may be a safer alternative to acrylic cements. Silicone is used in medical applications for its biocompatibility and stability characteristics. Previously, no study has been completed which compares silicone to acrylic cements. In this study, both materials were injected into the cell medium during the curing process which more accurately reflects clinical use of material. Initially, cell cultures followed ASTM standard F813-07 which fails to capture the effects of monomer released during curing. Subsequently, a modified cell culture method was employed which evaluated cytotoxicity while the materials cured. The objective of this study was to capture toxicity data during curing phase. Thus, the test method employed measured and excluded the impact of the exothermic reaction temperature of polymethyl methacrylate (PMMA) on cell growth. The concentration of PMMA monomer was measured at 1 and 24 h after injecting PMMA into culture plates in a manner consistent with established cell growth methodologies. Our results indicate current in vitro cytotoxicity assays recommended by ASTM standards are unable to reveal the real cytotoxic effect caused by methyl methacrylate monomers during polymerization. Our modified experiment can more accurately illustrate the true nature of the toxicity of materials and improve assay results. In these tests, silicone based elastomeric polymers showed excellent cytocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2693-2699, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34086DOI Listing

Publication Analysis

Top Keywords

polymethyl methacrylate
8
curing phase
8
released curing
8
acrylic cements
8
method employed
8
cell growth
8
silicone
5
curing
5
materials
5
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!