Differences among individuals within species affect community and ecosystem processes in many systems, and may rival the importance of differences between species. Intraspecific variation consists of both plastic and genetic components that are regulated by different processes and operate on different time scales. Therefore, probing which mechanisms can affect traits sufficiently strongly to affect ecosystem processes is fundamental to understanding the consequences of individual variation. We find that a dominant deciduous tree of Pacific Northwest riparian ecosystems, red alder, exhibits strong and synergistic responses to nutrient resources and herbivory stress. These induced responses, which include shifting nutrient and plant secondary metabolite composition, have cascading effects on aquatic ecosystem function. Defense responses suppress leaf litter decomposition in small streams, thus altering the rate of energy capture for one of the most abundant terrestrial carbon sources entering aquatic systems. We find that alder responses to herbivory stress largely depend on availability of soil nutrients, with modification of the highly cytotoxic diarylheptanoid group of secondary metabolites being favored in nutrient-poor environments and modification of the typically dose-dependent ellagitannins being favored in nutrient-rich environments. Importantly, these findings identify traits for herbivore resistance in alder trees and demonstrate that plastic responses occurring within a species and over short time scales substantially alter a key function of an adjacent ecosystem. Furthermore, demonstrating plasticity among alder secondary metabolites lends insight into this system, in which decomposer communities are known to adjust to the secondary chemistry of local alder trees to facilitate rapid decomposition of locally derived leaf litter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-018-4094-6 | DOI Listing |
Sci Total Environ
January 2025
INRAE, UR RiverLy, Villeurbanne F-69625, France.
Since recent years, an increasingly large number of toxic chemicals enters watercourses threatening freshwater biodiversity. But ecological studies still poorly document the quantitative patterns linking exposure to complex mixture of toxic chemicals and species communities' integrity in the field. In this context, French monitoring authorities have recently deployed at a national scale in situ biotests using the feeding inhibition of the crustacean Gammarus as toxicity indicator.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China.
The outbreak of cyanobacterial blooms poses an increasingly serious ecological challenge. Our previous study found that calcium peroxide (CaO) has a high inhibitory effect on cyanobacteria, along with a practical application potential in cyanobacteria-dominated lakes. In order to explore the sensitivity of aquatic ecosystems to CaO treatment, we conducted this study to elucidate the ecological impact of CaO on Vallisneria natans (V.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:
The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!