AI Article Synopsis

  • Sphingosine 1-phosphate (S1P) triggers changes in the actin cytoskeleton by regulating non-muscle myosin light chain kinase (nmMLCK), promoting cell adhesion and enhancing vascular stability.
  • Genetic variants in the MYLK gene, which encodes nmMLCK, are linked to increased risk and severity of inflammatory lung diseases.
  • These MYLK variants were shown to decrease key phosphorylation levels and inhibit nmMLCK movement to the cell membrane, ultimately affecting cellular responses to S1P and potentially contributing to lung disease progression.

Article Abstract

Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y and Y phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846938PMC
http://dx.doi.org/10.1177/2045894018764171DOI Listing

Publication Analysis

Top Keywords

mylk coding
16
myosin light
12
light chain
12
chain kinase
8
mylk
8
human lung
8
lung endothelial
8
endothelial cell
8
tyrosine phosphorylation
8
phosphorylation spatial
8

Similar Publications

Alternative polyadenylation landscape of longissimus dorsi muscle with high and low intramuscular fat content in cattle.

J Anim Sci

January 2024

Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China.

Intramuscular fat content is one of the most important factors affecting beef quality. However, the role of alternative polyadenylation (APA) in intramuscular fat deposition remains unclear. We compared APA events in muscle samples from high and low intramuscular fat (IMF) cattle, based on RNA-seq data.

View Article and Find Full Text PDF

Poultry broodiness can cause ovarian atresia, which has a detrimental impact on egg production. Non-coding RNAs (ncRNAs) have become one of the most talked-about topics in life sciences because of the increasing evidence of their novel biological roles in regulatory systems. However, the molecular mechanisms of ncRNAs functions and processes in chicken ovarian development remain largely unknown.

View Article and Find Full Text PDF

Objective: This research was dedicated to investigating the impact of the SNHG12/microRNA (miR)-15b-5p/MYLK axis on the modulation of vascular smooth muscle cell (VSMC) phenotype and the formation of intracranial aneurysm (IA).

Methods: SNHG12, miR-15b-5p and MYLK expression in IA tissue samples from IA patients were tested by RT-qPCR and western blot. Human aortic vascular smooth muscle cells (VSMCs) were cultivated with HO to mimic IA-like conditions in vitro, and the cell proliferation and apoptosis were measured by MTT assay and Annexin V/PI staining.

View Article and Find Full Text PDF

Ascending thoracic aortic dissection (ATAD) is a well-known vascular cause of sudden death. Spontaneous coronary artery dissections (SCAD) are emerging as an important cause of early-onset myocardial infarction and sudden death. Genetic variants in multiple connective tissue genes have been recognized to underlie ATAD; other genetic variants have similarly been recognized to underlie SCAD.

View Article and Find Full Text PDF

Gastrointestinal (GI) cancers are responsible for approximately half of cancer-related deaths, highlighting the need for the identification of distinct and common features in their clinicopathological characteristics. Long ncRNA (lncRNAs), which are involved in competitive endogenous RNA (ceRNA) networks with critical roles in biological processes, constitute a substantial number of non-coding RNAs. Therefore, our study aimed to investigate the similarities and differences in the ceRNA networks of The Cancer Genome Atlas (TCGA)-GI cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!